
The Duckiebot Operation Manual

Contents

Duckiebot Assembly

Duckiebot Configurations

Getting the Duckiebot hardware

Assembly - Duckiebot DB21J

Assembly - Duckiebot DB21M

Duckiebot FAQ Guide

Software Setup

Setup - Laptop

Setup - Accounts

Setup - Duckiebot SD Card

Setup - Booting the Duckiebot

Setup - Duckiebot Dashboard

Duckiebot Operations

Handling - Duckiebot DB21

Operation - Use the Dashboard

Operation - Make it Move

Operation - Make it See

Operation - Make it Shine

Operation - Software Tools

Calibration - Camera

Calibration - Wheels

Operation - Taking and verifying a log

Demos

Introduction to Demos

Duckiebot Supported Demos

Duckiebot Legacy Demos

Learning Experiences

Introduction to Learning Experiences

Supported Learning Experiences

Experimental Learning Experiences

Troubleshooting Guides

Operation - Networking

Debug - Re-flash Microcontroller

Debug - Duckiebot Update

Requesting a Support Connection

Reset Dashboard

Reference Reading

Version Control with Git

Docker Basics

By Duckietown, Inc.

© Copyright 2022.

Secure shell (SSH)

Handling circuits and batteries

Welcome to the operation manual for your Duckiebot!

In this manual, you will learn how to assemble and operate your Duckiebot, as well as how to

set up your working environment.

Duckiebot Configurations

We define the different Duckiebot configurations, from the first DB17 used during the MIT

course 2.166 in 2017 to the latest available.

Duckiebots DB18 onwards can be obtained from the Duckietown project store.

Overview

Model Computation Sensing Actuation Memory Power Notes

DB17 RPI3 Camera

2x DC

motors, 5x

RGB LEDs

32GB Off-the-shelf

DB18 RPI3B+ Camera

2x DC

motors, 5x

RGB LEDs

32GB
Duckie-power

bank

addressable

LEDs

DB19 RPI3B+

Camera,

Wheel

Encoders

2x DC

motors, 5x

RGB LEDs

32GB
Duckie-power

bank

DB21M JN2GB

Camera,

Wheel

Encoders,

ToF, IMU

2x DC

motors, 4x

RGB LEDs,

Screen

32GB Duckiebattery Chassis v1

DB21
JN2GB /

JN4GB

Camera,

Wheel

Encoders,

ToF, IMU

2x DC

motors, 4x

RGB LEDs,

Screen

64GB Duckiebattery Chassis v2

Legend:

“JN”: NVIDIA Jetson Nano

“RPI”: Raspberry Pi

“ToF”: Time of flight

“IMU”: Inertial Measurement Unit (Accelerometer, Gyroscope)

Duckiebot version 2021, or DB21

The Duckiebot DB21 debuted with the “Self-Driving Cars with Duckietown” massive open

online course, as version DB21M.

Later revisions, referred to under the broader label DB21 and then DB21J, improve the DB21M

by:

expanding the onboard memory from 32 GB to 64 GB;

What you will need Nothing

What you will get Knowledge of Duckiebot configuration naming

conventions and their respective functionalities.

https://cutt.ly/u81K1MU
file:///tmp/jb/_build/html/%7B#db-opmanual-dtbattery-v1%7D
file:///tmp/jb/_build/html/%7B#db-opmanual-dtbattery-v1%7D
file:///tmp/jb/_build/html/%7B#db-opmanual-dtbattery-v2%7D
file:///tmp/jb/_build/html/%7B#db-opmanual-dtbattery-v2%7D
https://www.duckietown.org/mooc

tweaking the chassis design (v1.0 -> v2.0) for reduced complexity and increased

stiffness;

introducing a newer version of the HUT (v3.15); which is backwards compatible and

removes the need for an additional resistor on the top button;

downgrades the IMU version from MPU-9250 to MPU-6050 due to global chip shortages

(2021-2022 chip crisis).

To assemble a DB21J Duckiebot, follow these instructions.

You can obtain a DB21J Duckiebot from the Duckietown project shop.

Duckiebot MOOC Founder’s edition, or DB21M

The DB21M is the first Duckiebot equipped with an NVIDIA Jetson Nano 2 GB computational

unit instead of a Raspberry Pi.

The DB21M debuts in 2021 with the first edition of the massive open online course, hosted on

the edX platform.

Fig. 1 The Duckiebot version DB21M.

The DB21M is readily recognized by its blazing blue chassis and triple-decker configuration. It

is equipped with a sensor suite including: camera, time-of-flight sensor, inertial measurement

unit (IMU) and wheel encoders. Moreover, the DB21M features new electronics (HUT v3.1,

front and back bumpers), a screen, a button and a custom designed Duckiebattery (not to be

confused with the Duckie-power-bank).

To assemble a DB21M Duckiebot, follow these instructions.

DB21M Duckiebots are no longer manufactured. If you want to obtain one you might

try to find inventory leftovers from Duckietown official distributors, or reach out to

the Duckietown hardware team.

Note

Note

https://cutt.ly/Q81Lg4q
https://cutt.ly/n81LRus
file:///tmp/jb/_build/html/_images/db21m.jpg
mailto:hardware%40duckietown.com

Duckiebot version 2019, or DB19

The DB19 is the latest version of the Duckiebot. You have a DB19 Duckiebot for sure if you

have the blue motors shown in figure .

Fig. 2 The motors for the version DB19.

Apart from the new motors and another HUT (v. 2.1), the DB19 is identical with the DB18. A

complete version can be seen here:

Fig. 3 The complete Duckiebot DB19.

To assemble a DB19 Duckiebot, follow these instructions.

DB19 Duckiebots have been extremely successful but are no longer manufactured,

and to the best of our knowledge only a few still exist unboxed.

Duckiebot version 2018, or DB18

You have a DB18 Duckiebot if, e.g., you have pledged to the Kickstarter.

There are two configuration of the DB18.

The DB18 configuration

The main configuration is labeled plainly as DB18 and is designed to operate on any

Duckietown. You have the DB18 if, e.g., you are a student attending the 2019 graduate level

classes in ETH or the University of Montreal, or you have pledged to Summer 2018

Note

file:///tmp/jb/_build/html/_images/dc-motor-db19.png
file:///tmp/jb/_build/html/_images/db19-complete-cad.png

Kickstarter.

The DB18 supports different power bank models depending on the geographical region, but

all these solutions are functionally equivalent, although their form factor is different.

You can recognize a DB18 from previous versions for having only one board in addition to the

Raspberry Pi, a backplate, and the computational stack mounted in the bottom deck.

Fig. 4 A DB18 Duckiebot assembly.

Fig. 5 Another DB18 Duckiebot assembly, with different battery.

To assemble a DB18 Duckiebot, follow these instructions.

DB18 Duckiebots are no longer manufactured. There are very few unopened DB18

boxes in the world. For additional information, reach out to contact the Duckietown

hardware team.

The DB18-Robotarium configuration

The DB18-Robotarium configuration adds to the DB18 the hardware necessary to operate in

Robotariums (a.k.a. Duckietown Autolabs): continuously operating Duckietowns. They are

otherwise identical to the DB18.

The additional hardware consists of a top localization April Tag infrastructure and an “auto-

charging” mod, which allows Duckiebots to dock to charging stations and estimate the

residual battery charge.

Note

file:///tmp/jb/_build/html/_images/howto_assemble_finish_milestone.jpg
file:///tmp/jb/_build/html/_images/howto_assemble_finish_milestone-2.jpg
mailto:hardware%40duckietown.com

Autolabs are experimental Duckietown features, currently under development. You will find

DB18-Robotarium models in university research labs.

If you are interested in obtaining DB18-Robotarium Duckiebots, or in building your

Duckietown Autolab, contact the Duckietown team.

Fig. 6 A Duckiebot in DB18-Robotarium configuration.

Duckiebot versions 2017, or DB17

In the DB17 version, we had several configurations.

The configurations are defined with a root: DB17-, indicating the “bare bones” Duckiebot used

in the Fall 2017 synchronized course, and an appendix y which can be the union (in any

order) of any or all of the elements of the optional hardware set w, j, d, p, l, c .

A DB17 Duckiebot can navigate autonomously in a Duckietown, but cannot communicate with

other Duckiebots.

The elements of are labels identifying optional hardware that aids in the development

phase and enables the Duckiebot to talk to other Duckiebots. The labels stand for:

w: 5 GHz wireless adapter to facilitate streaming of images;

j: wireless joypad that facilitates manual remote control;

d: USB drive for additional storage space;

c: a different castor wheel to replace the preexisting omni-directional wheel;

p: PWM hat for convenient powering of the DC motor hat;

l: includes LEDs, LED hat, bumpers and the necessary mechanical bits to set the

bumpers in place. Note that the installation of the bumpers induces the replacement of

a few DB17 components;

It may be convenient at times to refer to hybrid configurations including any of the DB17-jwcd

in conjunction with a subset of the DB17-l components. In order to disambiguate, we define

partial upgrades as:

DB17-l1: adds a PWM hat to DB17, in addition to a short USB angled power cable and

a M-M power wire;

DB17-l2: adds a bumpers set to DB17, in addition to the mechanical bits to assemble it;

DB17-l3: adds a LED hat and 5 RGB LEDs to DB17-l1l2, in addition to the F-F wires to

connect the LEDs to the LED board.

Note: introducing the PWM hat in DB17-l1 induces a replacement of the spliced cable

powering solution for the DC motor hat. Details can be found in .

Functions: DB17-l is the necessary configuration to enable communication between

Duckiebots, hence fleet behaviors (e.g., negotiating the crossing of an intersection).

Subset configurations are sometimes used in a standalone way for: (DB17-l1) avoid

using a sliced power cable to power the DC motor hat in DB17, and (DB17-l2) for purely

aesthetic reasons.

O = { }

O

mailto:info%40duckietown.com
file:///tmp/jb/_build/html/_images/a-glimpse-in-the-robotariums.png

Getting the Duckiebot hardware

Foreword

You can acquire Duckiebots in two ways:

“One click” solution (DB18 and above): you can source complete hardware kits on the

Duckietown project online store. These kits are tested to work with Duckietown

software, are guaranteed to work, and come with a 12 months warranty. This is the

officially supported and recommended path to getting started with Duckietown.

Do it yourself (DB17): the DB17 Duckiebot configuration is made of components that

you can source independently. This configuration is no longer actively supported, but

you can find the bill of materials for this DIY approach below.

Acquiring the parts for a DB17

Here, we provide a link to all bits and pieces that are needed to build a DB17-jwd Duckiebot,

along with the price tag.

In general, keep in mind that:

The links might expire, or the prices might vary.

Shipping times and fees vary, and are not included in the prices shown below.

International deliveries are subject to additional custom clearances and import fees.

Substitutions are OK for the mechanical components, and not OK for all the

electronics, unless you are OK in writing some software. Limited technical support will

be offered for hardware customizations.

Buying the parts for more than one Duckiebot makes each one cheaper than buying

only one.

For some components, the links we provide contain more bits than actually needed.

DB17 Bill of materials

What you will need Knowledge of Duckiebot hardware configurations

What you will get Parts to assemble a Duckiebot.

https://cutt.ly/u81K1MU

Table 1 DB17 Bill of materials

Item Cost (USD)

Chassis 20

Camera with 160-FOV Fisheye Lens 39

Camera Mount 4

300mm Camera Cable 2

Raspberry Pi 3 - Model B+ 39

Heat Sinks 3

Power supply for Raspberry Pi 7.50

16 GB Class 10 MicroSD Card 10

Mirco SD card reader 6

DC Motor HAT 22.50

2 Stacking Headers 2.50/piece

Battery Pack 25

16 Nylon Standoffs (M2.5 12mm F 6mm M) 0.06/piece

4 Nylon Hex Nuts (M2.5) 0.02/piece

4 Nylon Screws (M2.5x10) 0.05/piece

2 Zip Ties (300x5mm) 9

Wireless Adapter (5 GHz) (DB17-w) 25

Joypad (DB17-j) 10.50

Tiny 32GB USB Flash Drive (DB17-d) 10

PWM/Servo HAT (DB17-l1) 17.50

Power Cable (DB17-l1) 7.80

Male-Male Jumper Wire (DB17-l1) 1.95

8 M3x10 pan head screws (DB17-l2) 7

8 M3 nuts (DB17-l2) 7

Bumpers set (DB17-l2) 7 (custom made)

Bumper bracers set (DB17-l2) 7 (custom made)

LEDs (DB17-l3) 10

LED HAT (DB17-l3) 9/piece (but 3 pieces minimum)

20 Female-Female Jumper Wires (300mm)

(DB17-l3)
8

4 4 pin female header (DB17-l3) 0.60/piece

12 pin male header (DB17-l3) 0.48/piece

2 16 pin male header (DB17-l3) 0.61/piece

3 pin male header (DB17-l3) 0.10/piece

2 pin female shunt jumper (DB17-l3) 2/piece

40 pin female header (DB17-l3) 1.50

5 200 Ohm resistors (DB17-l3) 0.10/piece

10 130 Ohm resistors (DB17-l3) 0.10/piece

Soldering tools 20

Total for DB17 configuration 193

Total for DB17-w configuration 218

Total for DB17-j configuration 203

Total for DB17-d configuration 203

Total for DB17-wjd configuration 238

Total for DB17-l configuration 367

Chassis

We selected the Magician Chassis as the basic chassis for the robot (The “Magician” chassis

was very popular. It is used in DB17 through DB19 Duckiebot models.).

http://www.kr4.us/magician-chassis-rob-12866.html
https://tinyurl.com/ybwrcywc
https://tinyurl.com/ybyewdrt
https://www.adafruit.com/product/1648
http://tinyurl.com/y66e43ks
https://tinyurl.com/yanradnp
https://www.adafruit.com/product/1995
http://tinyurl.com/y2dlbnfs
https://www.adafruit.com/product/939
https://tinyurl.com/y7qurpcw
https://www.adafruit.com/product/2223
https://tinyurl.com/ya7otc76
https://tinyurl.com/y9uy73b2
https://tinyurl.com/ydy4znem
https://tinyurl.com/ya2uo9so
https://tinyurl.com/yb8v3nns
https://tinyurl.com/ycvu7ok3
https://tinyurl.com/y9klooef
http://tinyurl.com/y4smbqe8
https://tinyurl.com/yd8bdl2r
https://tinyurl.com/yaptpssu
https://www.adafruit.com/products/1957
https://www.mcmaster.com/#92005a120/=19lvrzk
https://www.mcmaster.com/#90591a250/=19lvsom
https://www.adafruit.com/product/848
https://tinyurl.com/ydh9wqp5
https://www.adafruit.com/products/793
http://www.digikey.com/product-detail/en/PPTC041LFBN-RC/S7002-ND/810144
http://www.digikey.com/product-detail/en/amphenol-fci/68000-412HLF/609-3266-ND/1878525
http://www.digikey.com/product-detail/en/0022284160/WM50014-16-ND/313801
http://www.digikey.com/product-detail/en/M20-9990345/952-2263-ND/3728227
http://www.digikey.com/product-detail/en/382811-8/A26228-ND/293121
https://www.adafruit.com/products/2222
https://tinyurl.com/yaramn3g
https://tinyurl.com/y9vz2b9v
http://tinyurl.com/yyusy73b

We chose it because it has a double-decker configuration, and so we can put the battery in

the lower part.

The chassis pack includes 2 DC motors and wheels as well as the structural part, in addition

to a screwdriver and several necessary mechanical bits (standoffs, screws and nuts).

Fig. 7 The “Magician” chassis was very popular. It is used in DB17 through

DB19 Duckiebot models.

Raspberry Pi 3 - Model B

Note: It is recommended to upgrade to Raspberry Pi 3 model B+. In this case the 5 GHz

wireless adapter is no longer necessary.

The Raspberry Pi is the central computer of the Duckiebot. Duckiebots use Model B (Fig. 8),

a small but powerful computer.

Fig. 8 The Raspberry Pi 3 Model B is a 1.2GHz, 64-bit quad-core ARMv8

CPU, 1GB RAM little computer.

Power Supply

We want a hard-wired power source (5VDC, 2.4A, Micro USB) to supply the Raspberry Pi

(The power supply.) while not driving. This charger can double down as battery charger as

well.

Fig. 9 The power supply.

Heat Sinks

file:///tmp/jb/_build/html/_images/magician_chassis.jpg
file:///tmp/jb/_build/html/_images/rpi3b.png
file:///tmp/jb/_build/html/_images/power_supply.png

The Raspberry Pi will heat up significantly during use. It is recommended adding heat sinks,

as in The heat sinks.. Since we will be stacking HATs on top of the Raspberry Pi with 15 mm

standoffs, the maximum height of the heat sinks should be well below 15 mm. The chip

dimensions are 15x15mm and 10x10mm.

Fig. 10 The heat sinks.

Class 10 MicroSD Card

The MicroSD card (The MicroSD card.) is the hard disk of the Raspberry Pi. 16 GB of

capacity are sufficient for the system image.

Fig. 11 The MicroSD card.

Mirco SD card reader

A microSD card reader (The Mirco SD card reader.) is useful to copy the system image to a

Duckiebot from a computer to the Raspberry Pi microSD card, when the computer does not

have a native SD card slot.

Fig. 12 The Mirco SD card reader.

Camera

The Camera is the main sensor of the Duckiebot. All versions equip a 5 Mega Pixels 1080p

camera with wide field of view () fisheye lens (The Raspberry Pi camera with fisheye

lens.).

160∘

file:///tmp/jb/_build/html/_images/heat-sinks.jpg
file:///tmp/jb/_build/html/_images/SDcard.png
file:///tmp/jb/_build/html/_images/microsd-reader.png

Fig. 13 The Raspberry Pi camera with fisheye lens.

Camera Mount

The camera mount (The camera mount.) serves to keep the camera looking forward at the

right angle to the road (looking slightly down). The front cover is not essential.

Fig. 14 The camera mount.

The assembled camera (without camera cable), is shown in (The camera on its mount.).

Fig. 15 The camera on its mount.

300mm Camera Cable

A longer (300 mm) camera cable A 300 mm camera cable for the Raspberry Pi. makes

assembling the Duckiebot easier, allowing for more freedom in the relative positioning of

camera and computational stack.

Fig. 16 A 300 mm camera cable for the Raspberry Pi.

file:///tmp/jb/_build/html/_images/camera.png
file:///tmp/jb/_build/html/_images/camera-mount.jpg
file:///tmp/jb/_build/html/_images/mounted-camera.jpg
file:///tmp/jb/_build/html/_images/long_camera_cable.png

DC Motor HAT

We use the DC Stepper motor HAT (The stepper motor HAT.) to control the DC motors that

drive the wheels. This item will require soldering to be functional. This HAT has dedicate

PWM and H-bridge for driving the motors.

Fig. 17 The stepper motor HAT.

Stacking Headers

We use a long 20x2 GPIO stacking header (The stacking headers.) to connect the

Raspberry Pi with the DC Motor HAT. This item will require soldering to be functional.

Fig. 18 The stacking headers.

Battery

The battery (The battery.) provides power to the Duckiebot.

We choose this battery because it has a good combination of size (to fit in the lower deck of

the Magician Chassis), high output amperage (2.4A and 2.1A at 5V DC) over two USB

outputs, a good capacity (10400 mAh) at an affordable price. The battery linked in the table

above comes with two USB to microUSB cables.

Fig. 19 The battery.

Standoffs, Nuts and Screws

We use non electrically conductive standoffs (M2.5 12mm F 6mm M), nuts (M2.5), and

screws (M2.5x10mm) to hold the Raspberry Pi to the chassis and the HATs stacked on top of

the Raspberry Pi.

The Duckiebot requires 8 standoffs, 4 nuts and 4 screws.

file:///tmp/jb/_build/html/_images/motor_hat.png
file:///tmp/jb/_build/html/_images/stacking_header.png
file:///tmp/jb/_build/html/_images/battery-and-cables.jpg

Fig. 20 Standoffs, Nuts and Screws.

Zip Ties

Two 300x5mm zip ties are needed to keep the battery at the lower deck from moving around.

Fig. 21 The zip ties.

Configuration DB17-w

Wireless Adapter (5 GHz)

The Edimax AC1200 EW-7822ULC 5 GHz wireless adapter (The Edimax AC1200 EW-

7822ULC WiFi adapter.) boosts the connectivity of the Duckiebot, especially useful in busy

Duckietowns (e.g., classroom). This additional network allows easy streaming of images.

Fig. 22 The Edimax AC1200 EW-7822ULC WiFi adapter.

This component is not necessary if upgrading to Raspberry Pi 3 Model B+.

Configuration DB17-j

Joypad

The joypad is used to manually remote control the Duckiebot. Any 2.4 GHz wireless

controller (with a tiny USB dongle) will do.

The model linked in the table (A Wireless joypad.) does not include batteries.

file:///tmp/jb/_build/html/_images/mech-bits.jpg
file:///tmp/jb/_build/html/_images/zipties.png
file:///tmp/jb/_build/html/_images/edimax.png

Fig. 23 A Wireless joypad.

Requires: 2 AA 1.5V batteries (Batteries.) not included in the bill of materials.

Fig. 24 Batteries.

Configuration DB17-d

Tiny 32 GB USB Flash Drive

In configuration DB17-d, the Duckiebot is equipped with an “external” hard drive (The tiny 32

GB USB flash drive.). This add-on is very convenient to store logs during experiments and

later port them to a workstation for analysis. It provides storage capacity and faster data

transfer than the MicroSD card.

Fig. 25 The tiny 32 GB USB flash drive.

Configuration DB17-l

LEDs

This Duckiebot is equipped with 5 RGB LEDs (The DB17 RGB LEDs.). LEDs can be used to

signal to other Duckiebots, or just make fancy patterns.

The pack of LEDs linked in the table above holds 10 LEDs, enough for two Duckiebots.

file:///tmp/jb/_build/html/_images/joystick.png
file:///tmp/jb/_build/html/_images/batteries.jpg
file:///tmp/jb/_build/html/_images/USBdrive.png

Fig. 26 The DB17 RGB LEDs.

LED HAT

The LED HAT (The LED HAT.) provides an interface for our RGB LEDs and the

computational stack. This board is a daughterboard for the Adafruit 16-Channel PWM/Servo

HAT, and enables connection with additional gadgets such as ADS1015 12 Bit 4 Channel

ADC, Monochrome 128x32 I2C OLED graphic display, and Adafruit 9-DOF IMU Breakout -

L3GD20H+LSM303. This item will require soldering.

This board is custom designed and can only be ordered in minimum runs of 3 pieces. The

price scales down quickly with quantity, and lead times may be significant, so it is better to

buy these boards in bulk.

Fig. 27 The LED HAT.

PWM/Servo HAT

The PWM/Servo HAT (The PWM-Servo HAT.) mates to the LED HAT and provides the

signals to control the LEDs, without taking computational resources away from the Rasperry

Pi itself. This item will require soldering.

Fig. 28 The PWM-Servo HAT.

Power Cable

To power the PWM/Servo HAT from the battery, we use a short (30cm) angled male USB-A

to 5.5/2.1mm DC power jack cable (The 30cm angled USB to 5.5/2.1mm power jack cable.).

file:///tmp/jb/_build/html/_images/led.png
https://www.adafruit.com/product/1083
https://www.adafruit.com/product/931
https://www.adafruit.com/product/1714
file:///tmp/jb/_build/html/_images/led_hat.png
file:///tmp/jb/_build/html/_images/servo_hat.png
file:///tmp/jb/_build/html/_images/power-cable-usb-to-jack.png

Fig. 29 The 30cm angled USB to 5.5/2.1mm power jack cable.

Male-Male Jumper Wires

The Duckiebot needs one male-male jumper wire (Male-male jumper wires.) to power the DC

Stepper Motor HAT from the PWM/Servo HAT.

Fig. 30 Male-male jumper wires.

Female-Female Jumper Wires

20 Female-Female Jumper Wires (Female-female jumper wires.) are necessary to connect 5

LEDs to the LED HAT.

Fig. 31 Female-female jumper wires.

Bumpers

These bumpers are designed to keep the LEDs in place and are therefore used only in

configuration DB17-l. They are custom designed parts, so they must be produced and

cannot be bought. We used laser cutting facilities.

Headers, resistors and jumper

Upgrading DB17 to DB17-l requires several electrical bits: 5 of 4 pin female header, 2 of 16

pin male headers, 1 of 12 pin male header, 1 of 3 pin male header, 1 of 2 pin female shunt

jumper, 5 of 200 Ohm resistors and finally 10 of 130 Ohm resistors.

These items require soldering.

Caster (DB17-c)

The caster (The caster wheel.) is an DB17-c component that substitutes the steel omni-

directional wheel that comes in the Magician Chassis package. Although the caster is not

essential, it provides smoother operations and overall enhanced Duckiebot performance.

file:///tmp/jb/_build/html/_images/mm_wires.png
file:///tmp/jb/_build/html/_images/ff_wires.png
file:///tmp/jb/_build/html/_images/caster.png

Fig. 32 The caster wheel.

To assemble the caster at the right height we will need to purchase:

4 standoffs (M3 12mm F-F) (Standoffs for caster wheel.),

8 screws (M3x8mm) (Screws for caster wheel.), and

8 split lock washers (Split lock washers for caster wheel.).

Fig. 33 Standoffs for caster wheel.

Fig. 34 Screws for caster wheel.

Fig. 35 Split lock washers for caster wheel.

The caster wheel use is to be considered experimental and has been dropped in

official configurations starting from DB18.

Assembly - Duckiebot DB21J

Foreword

Note

What you will need Duckiebot DB21 parts (get a DB21-Jx). If you are unsure

what version of Duckiebot you have, check the overview

of existing Duckiebot configurations.

A micro SD card with the Duckiebot image on it. The

procedure to flash the SD card is explained here.

3-4 hours of assembly time.

What you will get An assembled Duckiebot in configuration DB21J.

file:///tmp/jb/_build/html/_images/caster-standoffs.png
file:///tmp/jb/_build/html/_images/caster-screws.png
file:///tmp/jb/_build/html/_images/caster-split-washer.png
https://get.duckietown.com/products/duckiebot-db21

These instructions are your friend. Follow them carefully, especially if it’s the first time you

assemble a Duckiebot. Small variations might cause big effects (e.g., don’t flip your cables!).

Overview

A Duckiebox contains the following components:

The assembly process is divided in 6 parts. They must be completed in the following order:

Part 1: Preliminary Steps

Part 2: Drive Train

Part 3: Computation Unit

Part 4: Rear Assembly

Part 5: Front Assembly

Part 6: Top Deck Assembly

Troubleshooting section

The Troubleshooting section at the bottom of this page provides resolutions to common

problems.

Preliminary Steps

Unboxing

Unbox all of your components and lay them out on a flat surface. Ensure that you have well

lit, uncluttered space to work on.

“The Duckiebox hides but does not steal”. Your Duckiebot chassis might be under

the white protection foam inside the box. To reach it, pull out the white foam from

the box after removing everything. Mind that the upper part of the inside foam has

several side pockets in addition to a main compartment where components are

located.

Although not necessary, a small (M2.5) wrench and pliers might ease some passages.

Both NVIDIA Jetson Nano 2 GB and 4 GB are supported, but the SD cards must be

initialized differently, as described in Setup - Duckiebot SD Card.

Plastic cover

TODO Video tutorial

Note

Note

Peel the plastic cover from all the chassis parts, on both sides.

Screws, Nuts and Stand-offs

Verify each connecting part before using them. This will prevent undesirable effects (e.g.,

nylon screws prevent electrical shorts; bigger screws might damage the chassis).

In addition, there are also shorter screws, which can be used in some cases.

HUT

Hut is the electronics board:

It contains the connectors for various sensors, the fan, motors, external button, etc. Also it is

mounted to the NVIDIA Jetson Nano. A more detailed scheme is shown in the figure:

Charge Duckiebattery via the HUT

This preliminary step allows us to start charging the battery while confirming the functionality

of the HUT.

Connect the battery and the HUT board as shown and make sure a green LED on the

HUT is lit.

Wait 30 minutes and then push the button on the battery.

Check that the state of charge LEDs on the battery start blinking.

Leave this setup until the battery is charged. This may take up to 5 hours.

You can familiarize with how the Duckiebattery works by reading its handling instructions.

Base-plate

In the following steps (1 to 16) we will build the base-plate assembly of the Duckiebot.

You could try to use shorter screws in case the screws do not fully insert into the

standoffs.

Note

Occasionally manufacturing tolerances (on the nut and the chassis) might prevent a

flush fit. Trying a different nut or changing its orientation might solve the problem.

Sometimes it may be convenient to use pliers.

Note

Remove the USB cable from the Duckiebattery, connected in the battery related preliminary

step.

Before proceeding, verify that no component is wiggling. The only things moving should be

the cables and the sphere in the omni-wheel (and, yes, the motor axles). Proceed to gently

tighten the screws of the offending parts, if necessary.

Computation Unit

The following steps (17 to 25) guide through the assembly of the Computation unit:

The fan connection and the Jetson Nano in pictures 21 and 22 are different. We

would recommend following step 21.

Note

Now connect it to the base-plate (i.e, the rest of the chassis assembled in steps 1 to 16).

Verify the chassis components are locked correctly.

Rear Assembly

The following steps (26 to 39) guide through the assembly of the rear part of the Duckiebot:

Make sure that both rows of pins on the 40-pin expansion header on the Jetson

Nano are connected to the corresponding contacts of HUT.

Note

Front Assembly

Steps 40 to 52 guide you through the assembly of the front bumper:

Do not proceed to Steps 51 and 52.

It is now recommended that you connect your ToF Sensor directly to the Duckiebot

HUT. To do this:

1. Locate the 260mm cable that you connected to the I2C port on the front

bumper in Step 44.

2. Disconnect the cable from the front bumper I2C port. Do not disconnect the

other end of the cable from the HUT.

3. Connect the now free end of the cable into the ToF sensor port shown in Step

51.

4. Disregard Steps 51 and 52.

You can now continue on to the Top Deck Assembly

Top Deck Assembly

This last section (steps 53 to 63) guide through the assembly of the top deck:

Attention (04/2023)

On the display board you will see 4 pins: SDA, SCL, VCC, GND. Make sure that

the correct color wire is connected to the corresponding pin on the HUT.

Note

Power your Duckiebot

One of the USB ports on the HUT will remain free. You can use this port to charge the

Duckiebot. To avoid putting additional stress on the connector, you can leave this cable

plugged in and store it under the blue top lid.

Always plug and unplug USB cables from the HUT with care!

Make sure the SD card was flashed successfully without any error during the process and it

is plugged in Jetson Nano under the main board. ONLY then you can continue to follow the

instructions. Once your Duckiebot is fully charged, you can press the button of the battery on

the side to power it up. It is important to make sure the battery is charged to prevent

undesired shutdown during the first boot, which will compromise the initialization sequence

and require the sd card to be re-flashed.

Congratulations, your Duckiebot DB21J is now completely assembled.

Additional Parts

These additional parts are not always necessary.

Back Pattern

The back pattern enables the traffic management behavior used in challenges with vehicles

(e.g., LFV, LFIV, etc.).

Warning

April Tag

This top facing April Tag enables localization in Duckietown Autolabs.

Check the outcome

Look at the Overview of interlocking parts and make sure you have used each type at

least once.

Check all cable connectors and make sure they are plugged in completely. Do not use

force on the Duckiebot, it is (almost) never useful, and it might lead to undesirable

outcomes.

Make sure you have flashed your SD card with the latest version of the Duckiebot

image (configuration DB21M if using a Jetson Nano 2 GB, DB21J if using a Jetson Nano

4 GB).

Version 1.2.2 is the minimum requirement for enabling battery code updates.

Make sure you have at least this version (>22 March 2021).

Make sure the SD card is inserted in Jetson Nano in the dedicated SD card slot under

the main board. Do not plug it in the adapter and in a USB port. If you have already

inserted a flashed SD card, you are allowed to push the magic button on the battery.

Which LEDs you should see:

Blue LEDs when the robot is off and you plug in the charger (after it’s off);

White LEDs when the robot is on;

Random color LEDs when the robot is powering on.

Note

file:///tmp/jb/_build/html/+opmanual_autolab#book

Troubleshooting

Troubleshooting

SYMPTOM I can’t find the blue chassis.

RESOLUTION It’s under the white foam in the Duckiebox. Remove the inner

packaging to access it.

Troubleshooting

SYMPTOM Camera cable needs to be twisted to make the pins on the

cable matching those in the connector. Is this normal?

RESOLUTION Yes this is normal. It might look a little nicer if you wire the

camera cable around the metal stand-off next to the plug.

Troubleshooting

SYMPTOM The Duckiebattery does not fit flush in the compartment.

RESOLUTION Position it as it fits (at an angle). It will make the assembly a

little trickier but everything will work out in the end.

Troubleshooting

SYMPTOM I don’t have enough screws of a specific type.

RESOLUTION Each package has enough screws of each type, plus spares of

some. It might happen to inadvertently use one type instead of

the correct one, which will result in shortages towards the final

stages. Following the instructions carefully will prevent this

from happening.

Troubleshooting

SYMPTOM I can’t screw the omni-directional wheel right; the screws don’t

fit all the way in the standoffs.

RESOLUTION Occasionally the standoffs are not fully threaded due to

manufacturing inefficiencies. The solution is to orient, in case

of need, the shorter threaded stand-off side towards above, on

the side of the chassis. Alternatively, shorter screws (provided

in the package) can be used. If everything else fails, a “dirty”

but effective solution is to use two spare nuts to mitigate

tolerances, as shown in the picture below:

Troubleshooting

SYMPTOM A piece broke while I was trying to assemble it!

RESOLUTION Mistakes happen. Some damages will not influence the

functionality of the robot, others will be fixable at home with

some tools, others could be showstoppers. Please take a

picture of the damage and email hardware@duckietown.com

for assistance.

Troubleshooting

SYMPTOM The wheels wiggle and/or fall off the motors.

RESOLUTION This is due to manufacturing tolerances. You may remove the

distance disks used in the assembly between motors and

wheels, but make sure the wheels are not touching the screws

of the motor mounts. Alternatively, screws are provided to fix

the wheels to the motor axles. Make sure not to tighten the

screws too hard, or they will add resistance to the spinning of

the wheels (you can find the sweet spot by turning the wheel

by hand and feeling the resistance torque).

Fig. 36 Screws will keep the wheels in place. Do

not tighten too hard!

Troubleshooting

SYMPTOM My Duckiebot is driving backwards when pressing the key for

straight forward.

RESOLUTION Try swapping the motor cables on the HUT connectors.

Double-check the motor cables are connected to their

respective ports as indicated above.

mailto:hardware%40duckietown.com

Troubleshooting

SYMPTOM I don’t understand what’s going on with the connections!

RESOLUTION This simplified block diagram of data and electrical

connections of the DB21M might help:

Fig. 37 Block diagram of electrical and data

connections for the DB21J and DB21M.

Troubleshooting

SYMPTOM ToF sensor not detected

RESOLUTION If you have Jetson Nano with 2 camera ports, try to plug ToF

into CH4 instead of CH6 on the front LED bumper board.

Troubleshooting

SYMPTOM I have a non-functional sticker with weird symbols left over.

What to do with it?

RESOLUTION Duckiebots are FCC and CE certified, which means they

comply with (and surpass) material quality (e.g., RoHS 2.0)

and electrical interference standards (FCC, CE). You should

place the sticker somewhere on the Duckiebot. We suggest a

position out of sight (of other Duckiebots) to prevent detection

issues in more advanced applications. For example, under the

wheels:

Assembly - Duckiebot DB21M

These instructions are not of the latest Duckiebot model. Unless you are handling a

legacy Duckiebot (version DB21M), you should follow these instructions instead:

DB21J assembly instruction.

Not sure what is your Duckiebot? Read more about Duckiebot configurations.

Foreword

These instructions are your friend. Follow them carefully, especially if it’s the first time you

assemble a DB21M. Small variations might cause big effects (e.g., don’t flip your cables!).

Video tutorial

Fig. 38 Place the sticker somewhere a human can

read it, but another Duckiebot cannot.

Troubleshooting

SYMPTOM I followed the instruction to the letter, but there is something off

I can’t quite put my finger on.

RESOLUTION You forgot to put a duckie on top of your Duckiebot!

Attention

See also

What you will need Duckiebot DB21M parts (get a DB21M). If you are unsure

what version of Duckiebot you have, check this overview

of all existing Duckiebot configurations.

A micro SD card with the Duckiebot image on it. The

procedure to flash the SD card is explained here.

3 hours of assembly time.

What you will get An assembled Duckiebot in configuration DB21M.

https://staging-docs.duckietown.com/daffy/opmanual-duckiebot/preliminaries_hardware/duckiebot_configurations/index.html#duckiebot-configurations
https://get.duckietown.com/

Duckiebot DB21M unpacking and assembly from Duckietown on Vimeo.

Overview

A Duckiebox contains the following components:

Fig. 39 Overview of all parts in your Duckiebox

The assembly process is divided in 9 parts. They must be completed in the following order:

Part 1: Preliminary Steps

Part 2: Drive Train

Part 3: Battery Pack Installation

Part 4: Computational Unit and Rear Assembly

Part 5: Cable Management

Part 6: Front Assembly

Part 7: Top Plate Assembly

Part 8: Power your Duckiebot

Part 9: Additional Parts

Troubleshooting

The Troubleshooting section at the bottom of this page provides resolutions to common

symptoms.

Preliminary Steps

Unboxing

Unbox all of your components and lay them out on a flat surface. Ensure that you have well

lit, uncluttered space to work on.

What’s in the box and assembly video

https://vimeo.com/528621827
https://vimeo.com/duckietown
https://vimeo.com/
file:///tmp/jb/_build/html/_images/db21-parts-overview.jpg
https://vimeo.com/528621827

“The Duckiebox hides but does not steal”. Your Duckiebot chassis is under the

white protection foam. To get to the chassis, pull out the white foam from the box

after removing everything. Mind that the upper part of the inside foam has several

side pockets in addition to a main compartment where components are located.

Although not necessary, a small (M2.5) wrench might ease some of the next passages.

Plastic cover

Peel the plastic cover from all the chassis parts on both sides.

Screws, Nuts and Stand-offs

Each type of screw, nut and stand-off is labeled with an index. You will find corresponding

labels on the pictures at each step. Using the right parts at each step will prevent undesirable

effects (e.g., nylon screws prevent electrical shorts).

Fig. 40 Overview of interlocking parts

Drive Train

Step 0 - Charge battery via HUT

Connect the battery and the HUT board as shown and make sure a green LED on the

HUT is lit.

Wait 30 minutes and then push the button on the battery.

Check that the state of charge LEDs on the battery start blinking.

Leave this setup until the battery is fully charged. This may take up to 5 hours.

Tip

file:///tmp/jb/_build/html/_images/db21-parts_indices.png
file:///tmp/jb/_build/html/_images/db21-step_00.png

In the following steps (1 to 12) you will build the base plate assembly.

Step 1

Take the baseplate (number 02 on the bottom side) and insert two metal M3 nuts (N3) as

shown.

It might appear tricky at first to make the nuts fit. Once on the inset, gently rotate each nut

until it falls in place (note the final orientation of the screw in the picture).

Occasionally manufacturing tolerances (on the nut and the laser cut chassis) might

prevent a flush fit. Trying a different nut or changing the insert direction might solve

the problem.

Step 2

Check the hole pattern in the middle of the plate to make sure you are holding it the right

orientation, then insert two of the motor plates in the base plate.

Note

file:///tmp/jb/_build/html/_images/db21-overview-step_01-12.png
file:///tmp/jb/_build/html/_images/db21-step_01.png

Step 3

Connect one of the 6-pin motor cable to the blue motor.

It might be easier if you place the base plate on a flat surface so hold the motor

plates. Use one hand to hold the nut, and the other to drive the screwdriver.

Step 4

Place the motor between the two plates and tighten it with two M3x30 screws (B5) and two

metal M3 nuts (N3). Tighten the screws enough so that the final assembly does not wobble.

Don’t use excessive force to avoid getting hurt (or braking something).

Pre-bend the cable before carefully passing it through the cable management inset

on the chassis. Don’t use force to avoid braking the inset.

Step 5

Connect the second 6-pin motor cable to the second motor.

Tip

Warning

file:///tmp/jb/_build/html/_images/db21-step_02.png
file:///tmp/jb/_build/html/_images/db21-step_03.png
file:///tmp/jb/_build/html/_images/db21-step_04.png

Step 6

Insert the other two motor plates into the base plate, similarly to step 2.

Step 7

Tighten the second motor with two M3x30 metal screws (B5) and two metal M3 nuts (N3) and

place the cable, similarly to steps 3 and 4.

Step 8

Connect one of the longest 4-pin cables to the white connector of the IMU (Inertial

Measurement Unit) board.

file:///tmp/jb/_build/html/_images/db21-step_05.png
file:///tmp/jb/_build/html/_images/db21-step_06.png
file:///tmp/jb/_build/html/_images/db21-step_07.png

Step 9

Attach the IMU board to the base plate using two nylon M2.5x10 screws (B2) and two nylon

M2.5 nuts (N2).

Step 10

Flip the assembly and verify that the three cables are routed through their corresponding

holes or slits (cable of the left motor through the left slit, cable of the right motor through the

right slit).

Step 11

Flip the assembly again and mount the two M3x25 stand-offs (S3) to the bottom plate. Use

two metal M3x8 screws (B3).

file:///tmp/jb/_build/html/_images/db21-step_08.png
file:///tmp/jb/_build/html/_images/db21-step_09.png
file:///tmp/jb/_build/html/_images/db21-step_10.png

Step 12

Mount the omni-wheel to the stand-offs using two of the metal M3x8 screws (B3).

If you note the screws don’t go all the way, try flipping the stand-off.

Verify the assembly

Before proceeding, verify that no component is wiggling. The only things moving should be

the cables and the sphere in the omni-wheel (and, yes, the motor axles). Proceed to gently

tightening the screws of the offending parts, if necessary.

Congratulations, you just built the base plate Duckiebot assembly!

Battery Pack Installation

The following steps (13 to 18) guide through the Duckiebattery assembly:

Step 13

Tip

file:///tmp/jb/_build/html/_images/db21-step_11.png
file:///tmp/jb/_build/html/_images/db21-step_12.png
file:///tmp/jb/_build/html/_images/db21-overview-step_13-18.png

Take the upper plate (01) and 8 metal M3 nuts (N3). Compare the hole in the green circles

with the hole position on your plate and make sure they agree (if the number 01 is visible on

top, you are good to go).

Step 14

Insert 4 nylon M2.5x10 screws (B2) from the top and tighten them with 4 nylon M2.5 nuts

(N2).

Step 15

Take the two plates with numbers 04L and 04R and insert three metal M3 nuts (N3) into each

of them.

Step 16

Connect these two plates to the upper plate with a metal M3x8 screw (B3) each. Note the

slightly different holes in the side plates to mount them in the right way!

file:///tmp/jb/_build/html/_images/db21-step_13.png
file:///tmp/jb/_build/html/_images/db21-step_14.png
file:///tmp/jb/_build/html/_images/db21-step_15.png

Step 17

Insert the battery between the two side plates. Make sure the Mack the duck is on the

bottom. The USB ports of the battery are not the same. Flipping the battery at this stage will

cause the Duckiebot not to power on.

Step 18

Take the two small plates labeled 07 and lock the battery in place.

file:///tmp/jb/_build/html/_images/db21-step_16.png
file:///tmp/jb/_build/html/_images/db21-step_17.png
file:///tmp/jb/_build/html/_images/db21-step_17additional.png

Computation Unit and Rear Assembly

At this point, we are starting to see the final shape of the Duckiebot! The following steps (19

to 27) will help assemble the lower frame and mount the NVIDIA Jetson Nano board:

Step 19

Take the lower half of the Duckiebot from steps 1 to 12 again and mount it directly to the

assembly you have just created using 4 metal M3x8 (B3) screws. Make sure all the plates

are locked in place correctly.

This is a tricky step and might require a few tries to get it right. Remember that the

Roboticist is patient and welcomes challenges with joy and determination!

Step 20

Check the routing path of the two motor cables again from step 10 and wire them through the

holes in the upper plate.

Attention

file:///tmp/jb/_build/html/_images/db21-step_18.png
file:///tmp/jb/_build/html/_images/db21-overview-step_19-27.png
file:///tmp/jb/_build/html/_images/db21-step_19.png

Step 21

Do a similar procedure for the cable of the IMU unit.

Step 22

Take the two yellow driving wheels and push them to the motors using one distance disk (S4)

between each of them.

Step 23

1. Insert the SD card to the slot on the NVIDIA Jetson Nano board. Make sure the metal

pins of the SD card are facing the heat sink.

2. Place the Jetson Nano on the 4 screws from step 14 but DO NOT tighten the Jetson

with any nuts or stand-offs yet!

file:///tmp/jb/_build/html/_images/db21-step_20.png
file:///tmp/jb/_build/html/_images/db21-step_21.png
file:///tmp/jb/_build/html/_images/db21-step_22.png

Step 24

Take the side cover carrying the number 05L. Insert a nylon M2.5 nut (N2) and a metal M3

nut (N3) into the plate (note the engravings: N2 and N3 on the plate itself).

Then secure the plate to the frame using two metal M3x8 screws (B3).

You may need to lift the Jetson Nano a little to fit the side cover plate under the NVIDIA

Jetson Nano board.

Step 25

Place 4 of the (S5) spacers on the nylon screws holding the NVIDIA Jetson Nano board.

Step 26

Tighten the NVIDIA Jetson Nano board with the 6 brass stand-offs (S2). Put two stand-offs on

each of the front screws but only one each on the back.

file:///tmp/jb/_build/html/_images/db21-step_23.png
file:///tmp/jb/_build/html/_images/db21-step_24.png
file:///tmp/jb/_build/html/_images/db21-step_25.png

Step 27

Take the side cover carrying the number 05R. Insert a nylon M2.5 nut (N2) and a metal M3

nut (N3) into the plate, similarly to step 24 (note the engraving: N2 and N3 on the plate itself).

Then screw the plate to the frame using two metal M3x8 screws (B3).

Cable Management

Step 28

Take the USB cable that has three connectors. Connect the Duckiebattery and the NVIDIA

Jetson Nano board with the USB-A ports as shown in the picture below.

The micro USB connector must not be connected at that stage!

Step 29

Take the angled micro USB to micro USB cable and plug the angled connector to the middle

port on the Duckiebattery. Wire the cable through the chassis as shown in the picture below.

The micro USB end must be unplugged at that stage!

Attention

file:///tmp/jb/_build/html/_images/db21-step_26.png
file:///tmp/jb/_build/html/_images/db21-step_27.png
file:///tmp/jb/_build/html/_images/db21-step_28.png

An experienced Roboticist at this point would mark the free end of this cable (e.g.,

with a sticker or some tape), to make it distinguishable from the other free roaming

cable with a micro USB connector, so to make it very improbable to mix the two up

and prevent future headaches!

Step 30

Now take the last USB cable, with a micro USB plug on one side and an angled USB-A plug

on the other side. Connect the USB-A end to the last (right) port on the Duckiebattery. Again,

wire the cable through the chassis as shown and leave the micro USB connector free on the

other side.

Step 31

Connect the Wi-Fi dongle to the upper USB-A port on the NVIDIA Jetson Nano board.

Step 32

Take the back bumper board and connect the 4-pin cable of medium length to the white plug

on the board.

Tip

file:///tmp/jb/_build/html/_images/db21-step_29.png
file:///tmp/jb/_build/html/_images/db21-step_30.png
file:///tmp/jb/_build/html/_images/db21-step_31.png

Step 33

Wire the cable attached to the back bumper through the same hole in the upper plate as the

motor cable of the left driving motor.

Step 34

When attaching the back bumper board to the chassis, make sure the pins of the lower and

upper plate all fit well. Tighten the board with three metal screws (B3).

Step 35

Take the plate carrying the number 06 and press two nylon M2.5 nuts (N2) into the

corresponding slits.

file:///tmp/jb/_build/html/_images/db21-step_32.png
file:///tmp/jb/_build/html/_images/db21-step_33.png
file:///tmp/jb/_build/html/_images/db21-step_34.png

Step 36

Mount the plate number 06 to the back of the chassis using two metal M3x8 screws (B3).

The 06 is not symmetric and the orientation matters. If the number 06 is pointing

towards the Duckiebot, we are good to go!

Step 37

Take the fan and mount it on top of the heat sink of the NVIDIA Jetson Nano board using 4

metal M3x12 screws (B4). Make sure the cable of the fan is pointing to the back right side (it

might be necessary to use a little force on these screws, as the thread has to cut it’s way

through the heat sink the first time).

You don’t need to tighten the screws completely but the fan must sit tight.

Step 38

Attention

Note

file:///tmp/jb/_build/html/_images/db21-step_35.png
file:///tmp/jb/_build/html/_images/db21-step_36.png
file:///tmp/jb/_build/html/_images/db21-step_37.png

Take the PCB with the Duckietown logo on it (we’ll call it the HUT from now on. A DB21M is

equipped with a HUT v3.1).

Plug in the fan cable to the two pins as shown (note the orientation of the black and red

cables!).

Step 39

Gently press the pin connector of the HUT on the pins on the NVIDIA Jetson Nano board.

Make sure both motor cables are routed through the slit in the HUT board.

Step 40

Connect the HUT to the plate in the back using two nylon M2.5x10 screws (B2). Make sure the

end of the 4-pin cable connected to the back bumper board is pointing to the right hand side.

file:///tmp/jb/_build/html/_images/hutv31-layout.png
file:///tmp/jb/_build/html/_images/db21-step_38.png
file:///tmp/jb/_build/html/_images/db21-step_39.png

Step 41

Connect the 4-pin cable of the back bumper board to the white connector in the back right

corner of the HUT.

Step 42

Connect the first 6-pin motor cable of the left motor to the connector placed on the edge of

the HUT.

Step 43

Connect the second 6-pin motor cable of the right motor to the other connector.

file:///tmp/jb/_build/html/_images/db21-step_40.png
file:///tmp/jb/_build/html/_images/db21-step_41.png
file:///tmp/jb/_build/html/_images/db21-step_42.png

If you swap the motor cables, you Duckiebot will probably drive backwards when it

is supposed to drive forwards :)

Step 44

Connect the 4-pin cable from the IMU to the corresponding plug shown in the picture.

Front Assembly

The following steps 45 to 52 will guide you through the assembly of the camera unit as well

as some more electronics and cables.

Step 45

Note

file:///tmp/jb/_build/html/_images/db21-step_43.png
file:///tmp/jb/_build/html/_images/db21-step_44.png
file:///tmp/jb/_build/html/_images/db21-overview-step_45-52.png

If not already done, open the plug of the camera and push one side of the camera cable in.

The orientation of the cable should be such that the copper pins on the camera cable face

the camera plate. Then close the plug completely. Make sure to take off the plastic cap from

the lens.

Step 46

Wire the camera cable through the 3D printed camera mount starting from the front. Then

use 4 nylon M2x8 screws (B1) and 4 nylon M2 nuts (N1) on the other side to tighten the

camera to the mount.

Step 47

Mount the camera part to the front bumper board using only one metal M3x8 screw (B3) and

one metal M3 nut (N3).

Step 48

Mount the single nylon M3x5 stand-off (S1) with a metal M3x8 screw (B3) from the other side.

file:///tmp/jb/_build/html/_images/db21-step_45.png
file:///tmp/jb/_build/html/_images/db21-step_46.png
file:///tmp/jb/_build/html/_images/db21-step_47.png

Step 49

Take one of the longest 4-pin cables and connect it to the front bumper board as shown.

Step 50

Wire the cable that you have just connected (step 49) through the upper plate and the

connect it to the connector on the HUT, as shown below.

Step 51

Take the last of the long 4-pin cables and connect it to the front bumper board, similarly to

step 49.

file:///tmp/jb/_build/html/_images/db21-step_48.png
file:///tmp/jb/_build/html/_images/db21-step_49.png
file:///tmp/jb/_build/html/_images/db21-step_50.png

Step 52

Again, wire this cable through the upper plate and connect it to the HUT, similarly to step 50.

Step 53

Mount the front bumper board to the upper and lower plate using three metal M3x8 screws

(B3). Make sure they are locked in place correctly.

Step 54

Open the camera slit on the NVIDIA Jetson Nano board by raising it on the sides (with care),

and put in the other end of the camera cable.

The orientation of the cable should be such that the blue part of the cable faces the

camera (i.e., facing towards the front end of the Duckiebot).

Attention

file:///tmp/jb/_build/html/_images/db21-step_51.png
file:///tmp/jb/_build/html/_images/db21-step_52.png
file:///tmp/jb/_build/html/_images/db21-step_53.png

Step 55

Attach the small blue distance sensor to the stand-off on the front bumper and tighten it with

a nylon M3 nut (N4).

Make sure to take off the small transparent cover from the sensor.

file:///tmp/jb/_build/html/_images/db21-step_54.png
file:///tmp/jb/_build/html/_images/db21-step_55.png
file:///tmp/jb/_build/html/_images/db21-step_55A.png

Do not proceed to Step 56.

It is now recommended that you connect your ToF Sensor directly to the Duckiebot

HUT. To do this:

1. Locate the 260mm cable that you connected to the I2C port on the front

bumper in Step 49.

2. Disconnect the cable from the front bumper I2C port. Do not disconnect the

other end of the cable from the HUT.

3. Connect the now free end of the cable into the ToF sensor port shown in Step

56.

4. Disregard Step 56.

You can now continue on to the Top Plate Assembly

Step 56

Take the shortest 4-pin cable and connect the bottom of the time of flight sensor to the front

bumper, as shown below.

Top Plate Assembly

The following steps 57 to 64 show the assembly of the top plate of the DB21M, containing a

button and a screen.

Step 57

Remove the nut from the button, if necessary, and wire the button cables through the hole on

the top plate (marked as 03).

Attention (04/2023)

file:///tmp/jb/_build/html/_images/db21-step_56.png
file:///tmp/jb/_build/html/_images/db21-overview-step_57-59.png

Mind the orientation; if the number is pointing downwards, we are good to go!

Once the button is pushed in completely, tighten it again with the flat nut.

Step 58

Mount the screen to the plate in a way the pins of the screen are pointing towards the button.

Use 4 nylon M2.5 screws (B2) and 4 nylon M2.5 nuts (N2) for this.

Step 59

Have a look at the pin descriptions on the screen. Take the 4-pin cable with the long black

connectors and connect the 4 loose ends to the screen.

Follow this pattern: GND-black, VCC-red, SCK-yellow, SDA-blue.

Step 60

Connect the end of the cable from the button to the connector on the HUT, as below.

Attention

file:///tmp/jb/_build/html/_images/db21-step_57.png
file:///tmp/jb/_build/html/_images/db21-step_58.png
file:///tmp/jb/_build/html/_images/db21-step_59.png

Step 61

Connect the end of the cable from the screen to the 4 male pins on the HUT as shown. Check

the colors of the cables so that the same goes to the same, i.e.: GND-black, 3.3V-red, SCL-

yellow, SDA-blue.

Step 62

Gently place the cover plate on the chassis. Make sure the screws of the fan and the pins of

the side plates are locked in place properly.

Step 63

Tighten the cover part using two nylon M2.5x10 screws (B2).

file:///tmp/jb/_build/html/_images/db21-step_60.png
file:///tmp/jb/_build/html/_images/db21-step_61.png
file:///tmp/jb/_build/html/_images/db21-step_62.png

Step 64

Then, tighten the cover using two nylon M2.5 nuts (N2).

Power your Duckiebot

In this step we will plug the various power cables to the HUT. One port will remain free. You

can use this port to charge the Duckiebot.

Always plug and unplug USB cables from the HUT with care!

Step 65

Take the black USB cable that you have connected in step 29 and connect it to the micro

USB connector on the HUT as shown.

Warning

file:///tmp/jb/_build/html/_images/db21-step_63.png
file:///tmp/jb/_build/html/_images/db21-step_64.png
file:///tmp/jb/_build/html/_images/db21-how2charge.png

Step 66

Similarly, connect the other USB cable (routed through the same hole) to the HUT.

Step 67

Finally, connect the last cable to the HUT.

Step 68

At that point, your Duckiebot is fully assembled! For charging, connect the charging cable to

the last free micro USB connector on the HUT. To avoid putting additional stress on the

connector, you can leave this cable plugged in and store it somewhere under the blue top lid.

file:///tmp/jb/_build/html/_images/db21-step_65.png
file:///tmp/jb/_build/html/_images/db21-step_66.png
file:///tmp/jb/_build/html/_images/db21-step_67.png

Once your Duckiebot is fully charged, you can press the button of the battery on the side to

power it up (do this ONLY if a flashed SD card has been inserted).

Additional Parts

Step 69

If you have an April tag take some glue and put it in between the two nylon screws on the top

of you Duckiebot.

file:///tmp/jb/_build/html/_images/db21-step_68A.png
file:///tmp/jb/_build/html/_images/db21-step_68B.png
file:///tmp/jb/_build/html/_images/db21-step_69.png

Step 70

If you have a circle pattern put it on the back plate of your Duckiebot.

Check the outcome

Look at the Overview of interlocking parts and make sure you have used each type at

least once.

Check all cable connectors and make sure they are plugged in completely. Do not use

force on the Duckiebot, it is (almost) never useful and it might lead to undesirable

outcomes.

Make sure all USB cables to the Jetson Nano and the HUT are plugged in completely,

and in the correct order. Several configurations exist for which the Duckiebot will do

something, but only one, described above, is the correct one.

Make sure you have flashed your SD card with the latest version of the Duckiebot

DB21M image.

Version 1.2.2 is the minimum requirement for enabling battery code updates.

Make sure you have at least this version (>22 March 2021).

Make sure the SD card is inserted in Jetson Nano in the dedicated SD card slot under

the main board. Do not plug it in the adapter and in a USB port. If you have already

inserted a flashed SD card, you are allowed to push the magic button on the battery.

Troubleshooting

Note

Troubleshooting

SYMPTOM I can’t find the blue chassis.

RESOLUTION It’s under the white foam in the Duckiebox. Remove the inner

packaging to access it.

Troubleshooting

SYMPTOM Camera cable needs to be twisted to make the pins on the

cable matching those in the connector. Is this normal?

RESOLUTION Yes this is normal. It might look a little nicer if you wire the

camera cable around the metal stand-off next to the plug.

file:///tmp/jb/_build/html/_images/db21-step_70.png

Troubleshooting

SYMPTOM The Duckiebattery does not fit flush in the compartment.

RESOLUTION Position it as it fits (at an angle). It will make the assembly a

little trickier but everything will work out in the end.

Troubleshooting

SYMPTOM I don’t have enough screws of a specific type.

RESOLUTION Each package has enough screws of each type, plus spares of

some. It might happen to inadvertently use one type instead of

the correct one, which will result in shortages towards the final

stages. Following the instructions carefully will prevent this

from happening.

Troubleshooting

SYMPTOM I can’t screw the omni-directional wheel right; the screws don’t

fit all the way in the standoffs.

RESOLUTION Sometimes manufacturing inefficiencies make the thread

inside the standoff shorter than it should. This happens only

occasionally and it is not the norm. The solution is to orient, in

case of need, the shorter threaded stand-off side towards

above, on the side of the chassis.

Troubleshooting

SYMPTOM A piece broke while I was trying to assemble it!

RESOLUTION Mistakes happen. Some damages will not influence the

functionality of the robot, others will be fixable at home with

some tools, others could be showstoppers. Please take a

picture of the damage and send an email to

hardware@duckietown.com.

Troubleshooting

SYMPTOM The wheels tend to fall off the motors.

RESOLUTION You may remove the distance disks you put in step 22. But

make sure that the wheels are still not touching the screws of

the motor mounts.

Troubleshooting

SYMPTOM My Duckiebot is driving backwards when pressing the key for

straight forward.

RESOLUTION You have swapped the motor cables. Please check the steps

42 and 43 again and make sure you connected the cables the

right way.

Troubleshooting

SYMPTOM One of the black USB cables is too short to connect it to the

HUT.

RESOLUTION The customized cables may undergo some manufacturing

mailto:hardware%40duckietown.com

Duckiebot FAQ Guide

This FAQ page collects common roadblocks you might run into when setting up your

Duckietown environment and operating your Duckiebot.

Each symptom and resolution are also available on the pages they relate to throughout the

manual, so be sure to watch for troubleshooting sections and carefully complete checkpoints

as you progress.

If you don’t find the solutions you need in this book, be sure to first search the Duckietown

Stack Overflow and Slack communities for previous answers, then post your own question

following the support guidelines on Slack.

FAQs: Booting your Duckiebot

tolerances. If it does not fit, there is a second way to connect

the cables. However, some minor functionalities might differ in

that configuration (e.g. the fan might continue working when

shutting down the NVIDIA Jetson Nano).

Troubleshooting

SYMPTOM I don’t understand what’s going on with the connections

RESOLUTION This simplified block diagram of data and electrical

connections of the DB21M might help:

Troubleshooting

SYMPTOM I followed the instruction to the letter, but there is something off

I can’t quite put my finger on.

RESOLUTION You forgot to put a duckie on top of your Duckiebot!

Troubleshooting

SYMPTOM I pressed the power button on top to boot my Duckiebot but

nothing happened.

RESOLUTION Power on your Duckiebot using the button on the side of the

Duckiebattery. The top button is only for powering off. You can

also learn more about how to handle your Duckiebot in

Handling - Duckiebot DB21.

Troubleshooting

SYMPTOM My Duckiebot does not appear to boot after pressing the

power button on the battery. I don’t see a green light on the

HUT or the Jetson Nano.

RESOLUTION Refer back to Assembly - Duckiebot DB21J, and check each

of your cable connections. Confirm the start and end port of

each power cable from the battery. The battery must be

charged fully as shown in the first assembly step.

Troubleshooting

SYMPTOM My Duckiebot is getting power but does not appear to be

booting. The Wifi dongle is not blinking.

RESOLUTION Make sure you flashed the SD card following the instructions

in Setup - Duckiebot SD Card.

Troubleshooting

SYMPTOM My Duckiebot is getting power but does not appear to be

booting. The Wifi dongle is not blinking.

RESOLUTION Make sure that you correctly specified the model of your

Duckiebot when initializing the SD card.

If you have a Duckiebot with a 2GB Jetson Nano - the model

is DB21M

If you have a Duckiebot with a 4GB Jetson Nano - the model

is DB21J

If you are not using a Jetson Nano, the model is the model of

your Duckiebot (ex. DB19 or DBR4)

Troubleshooting

SYMPTOM The Duckiebot screen does not turn on even though it shows

up in dts fleet discover, and the Dashboard is accessible.

The ToF sensor and the front bumper are not detected on the

Dashboard Components page.

RESOLUTION Disconnect the ToF sensor from the front bumper and use the

long cable that originally connected the front bumper to the

HUT to connect the ToF sensor directly to that same HUT port.

Then reboot. This bypasses a known multiplexer issue on

some bumpers.

Troubleshooting

SYMPTOM My Duckiebot appears to be booted and the screen is on, but I

can’t see it using dts fleet discover.

RESOLUTION Your Duckiebot must be connected to the same network as the

computer you are using to run the dts commands. Check the

networking section of the book to see if your network is set up

correctly.

Troubleshooting

FAQs: Operating your Duckiebot

SYMPTOM I am not sure whether my Duckiebot is properly initialized.

RESOLUTION As long as the fleet discover tool shows ready, your

Duckiebot should be ready. You can also visit the dashboard to

confirm that the Duckiebot is serving its status. Generally as

long as you see the Duckiebot dashboard is up, your

Duckiebot should be correctly initialized.

Troubleshooting

SYMPTOM I see a permissions error when trying to access the Duckiebot

dashboard: Directory '/data/config/permissions'

cannot be written.

RESOLUTION Take the sd card from your robot (press in once to release the

spring, then remove)

Put it in your laptop using the adapter that came with the card

Navigate to the root of the card in your terminal. Most OS have

an option to right click on the drive when it appears on your

desktop or in the sidebar and select a “open in terminal”, “new

terminal at folder”, or similar

Run chmod -R 777 ./data/config/permissions

Eject the drive, place back in the Duckiebot, and power back

up

Troubleshooting

SYMPTOM The power button on top does not shut off the Duckiebot.

RESOLUTION The power button needs to be held for three seconds and then

released. If this still does not work, run dts duckiebot

update <your_robot> and then use dts duckiebot reboot

<your_robot>. You may also need to re-flash your HUT

following the procedure described in Debug - Re-flash

Microcontroller if you have not already.

Troubleshooting

SYMPTOM My Duckiebot has a very low battery charge and is stuck in a

boot cycle.

RESOLUTION Unplug all cables from the HUT except port # that is used to

charge the battery. Allow the battery to charge for at least 5

hours before plugging all cables back in their nominal

positions.

Troubleshooting

SYMPTOM When using the keyboard control GUI, I can see the

commands being sent to the Duckiebot (e.g., through the

Dashboard > Mission Control), but the Duckiebot does not

move. My Dashboard > Robot > Components page shows a

red alert for the HUT.

RESOLUTION If you have a HUT v3.1 you will stumble on this problem the first

time you try to move your Duckiebot. Re-flash your HUT

following the procedure described in Debug - Re-flash

Microcontroller.

Setup - Laptop

Troubleshooting

SYMPTOM I have reflashed the HUT but the joystick commands still do

not work or the Duckiebot operates in a jerky manner.

Additionally, the ToF sensor and front bumper are not detected

on the dashboard Components page. I may also be having

issues with the screen.

RESOLUTION Disconnect the ToF sensor from the front bumper and use the

long cable that originally connected the front bumper to the

HUT to connect the ToF sensor directly to that same HUT port.

Then reboot. This bypasses a known multiplexer issue on

some bumpers that can cause other HUT misbehaviors.

Troubleshooting

SYMPTOM I’m still having a software issue that the Duckietown team has

pushed a new fix for according to StackOverflow.

RESOLUTION You can pull the latest images to your Duckiebot by running

dts duckiebot update <duckiebot_name>. This is always

the correct way to reset your Duckiebot’s containers. You will

never need to reflash the SD card to get updates.

Troubleshooting

SYMPTOM A lot of the hardware components on the Robot Dashboard /

Components tab are not found on DB21-series Duckiebots.

And their connector buses are all I2C (see the bottom line of

each component card).

RESOLUTION There could be 3 reasons typically:

Please make sure that both rows of GPIO pins on the Jetson

are connected accordingly to the connection slots on the HUT.

A broken component along the I2C bus could lead to this

problem. You could perform the following: turn off the

Duckiebot, unplug one element from the HUT at a time and

boot, and repeat this for other components. If most missing

components appear connected at one test, it is likely the

unplugged component has a hardware failure. Please contact

the Duckietown team for replacement. Please also try to

record videos of these tests.

If all individual component unplugging tests were performed,

and the components along the I2C chain are still missing all

the time. There might be a Jetson I2C issue. Please try sudo

i2cdetect -r -y 1 after SSH’ed to you robot, to see if that

returns a table of I2C addresses identified. Please report to

Duckietown Team with the test videos of the previous step and

the outcome of running the i2cdetect command.

What you will need A laptop or machine running Ubuntu 20.04 or 22.04

Alternatively: A laptop or machine running MacOS

What you will get Your laptop configured with Duckietown software and

In this section, we will install all the software that you need to run the Duckietown

development environment on your laptop. This includes Git, Docker, and the Duckietown

Shell.

If you are unfamiliar with Git or Docker, we strongly recommend reading the

following reference pages to gain a working understanding of these tools.

1. The Duckietown Intro to Git

2. The Duckietown Intro to Docker

Check out the laptop requirements below to make sure you are ready to proceed, then

continue on to the next page to begin setting up your development environment.

If you need help installing Ubuntu, see Step 0: System Installation below.

Minimal Laptop Requirements

Duckietown officially supports Ubuntu 20.04 and Ubuntu 22.04.

Please be aware that using an operating system that is not officially supported reduces the

ability of the Duckietown team and the whole community to provide you with technical

support when needed.

Officially Supported

Ubuntu 22.04

This is the recommended operating system

for using Duckietown. We strongly suggest

using it.

Ubuntu 20.04

This older version of the Ubuntu operating

system will currently work with the

Duckietown ecosystem.

Unofficially Supported

Other Linux distributions

Having Ubuntu is not an enforced

requirement, and everything should in

theory work on any Linux operating system.

MacOSX

We provide instructions for setting up on

MacOSX, but you may run into bugs as you

venture further into development.

Ubuntu installed via VM

This is possible, though network

configuration is required. See the section

below for more details.

Windows (WSL)

An experimental setup is in development to

run the dts through the Windows

Subsystem for Linux (WSL). Select the

Windows (Beta) tab to test this.

Not Supported

Windows (Native)

Currently, it is not possible to run the

Duckietown development tools on Windows.

See below for available VM options to run

Ubuntu on your Windows machine.

Native installation vs virtual machines

Having Ubuntu installed natively on your laptop is recommended but not strictly required.

ready to sign into your accounts

Note

If you are running Ubuntu in a VM make sure that you are using a Bridged network adapter

(for example VirtualBox uses NAT by default). This allows you to be on the same subnetwork

as your Duckiebot.

Sometimes when running a VMware machine on a Mac OS host, it is neccessary to have

two network adapters: Share with my Mac for connecting to the internet and Bridged
Networking for connecting to the Duckiebot.

For more information about networking with VMware, see here.

Step 0: System Installation

Step 1: Dependency Installation

Select the tab for your operating system below, and follow the instructions to begin installing

the Duckietown software dependencies.

Install the Ubuntu operating system. Ubuntu 22.04 is strongly suggested.

Follow the official documentation for instructions.

1) Install dependencies

The basic development tools that you will need are pip3, git, git-lfs, curl, and wget.

Install these by running the following commands in the shell:

If you are running Ubuntu on a virtual machine, install the package open-vm-tools in

addition to the normal Ubuntu dependencies:

Checkpoint �

Before continuing, run the following test command

Never skip a checkpoint!

If you continue past a test that did not work, you will have further software issues down the

line, and they will be more complex to fix. Instead, if you do not get the expected outcome at

any checkpoint:

First check for any troubleshooting sections on the page that might match the problem.

sudo apt update
sudo apt install -y python3-pip git git-lfs curl wget

sudo apt install open-vm-tools

Test

Expected Result This command should output a version number for the pip3

package.

pip3 --version

Tip

Ubuntu MacOSX Windows (Beta)

Ubuntu MacOSX Windows (Beta)

https://wiki.ros.org/ROS/NetworkSetup
https://tutorials.ubuntu.com/tutorial/tutorial-install-ubuntu-desktop

Step 2: Docker Installation

Duckietown uses DockerHub to distribute the containerized version of its software modules,

and most Duckietown procedures entail some docker operations behind the scenes.

If you are unfamiliar with Docker, we strongly recommend reading the following reference

page to gain a working understanding of this tool: The Duckietown Intro to Docker

If you run into any issues that can’t be solved using the troubleshooting sections, join

the Duckietown community on StackOverflow and Slack following the instructions

below and search for previous solutions.

You can join the Duckietown community on Slack at this link. There you can request an

invitation to the Duckietown Stack Overflow team.

1) Install Docker

Install Docker by first ensuring that you don’t have older versions of Docker on your system

Then set up the apt repository containing Docker

Add the official GPG key

And set up the repository with

Finally, update again and install Docker Engine and Docker Compose

2) Set up Docker

Start by adding the user “docker” to your user group, then log out and back in

You need to log out and back in for this group change to take effect.

Checkpoint �

sudo apt-get remove docker docker-engine docker.io containerd runc

sudo apt-get update
sudo apt-get install \
 ca-certificates \
 curl \
 gnupg

sudo mkdir -m 0755 -p /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --
dearmor -o /etc/apt/keyrings/docker.gpg

echo \
 "deb [arch="$(dpkg --print-architecture)" signed-
by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu \
 "$(. /etc/os-release && echo "$VERSION_CODENAME")" stable" | \
 sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-
plugin docker-compose-plugin
sudo apt-get install docker-compose

sudo adduser `whoami` docker

Attention

Ubuntu MacOSX Windows (Beta)

https://hub.docker.com/duckietown
https://join.slack.com/t/duckietown/shared_invite/enQtNTU0Njk4NzU2NTY1LWM2YzdlNmJmOTg4MzAyODc2YTI3YTc5MzE2MThkZGUwYTFkZWQ4M2ZlZGU1YTZhYjg5YTgzNDkyMzI2ZjNhZWE

Step 3: Duckietown Shell Installation

Now make sure that Docker was correctly installed by running the following tests

Test

Expected Result Make sure the Docker version is v1.4.0+ and buildx version

v.0.8.0+

docker --version
docker buildx version

Test Start the hello-world image with

Expected Result You should see a message like Hello from Docker!

docker run hello-world

The Duckietown Shell is a command-line interface (CLI) program that provides all of the

necessary Duckietown operations, such as

Updating a Duckiebot

Driving a Duckiebot with a virtual keyboard

Viewing the camera stream of a Duckiebot from a graphical app

Using our learning experiences

(and more!)

1) Install the Duckietown Shell (dts)

Install the Duckietown Shell using the following command,

2) Source dts

Make sure your system can find local binaries by adding the following to your .bashrc file.

If you are using zsh, replace the .bashrc in the commands below with .zshrc

instead.

Then source the updates to your current shell or restart your shell.

Checkpoint �

To confirm that dts was installed successfully, run the following test

pip3 install --no-cache-dir --user --upgrade duckietown-shell

Attention

export PATH=~/.local/bin:${PATH}

source ~/.bashrc

Test

which dts

Ubuntu MacOSX

https://en.wikipedia.org/wiki/Command-line_interface

Windows (Beta)

Setup - Accounts

Now that you have the required software installed on your operating system, we will set up

the developer accounts you need to use each of the tools. Once you are logged in and have

tested your environment, you will be ready to develop with Duckietown!

Step 0: GitHub Account Setup

Duckietown uses GitHub to distribute its open-source code and engage with collaborators

and end-users. If you are unfamiliar with Git, we strongly recommend reading the following

reference page to gain a working understanding of this tool: The Duckietown Intro to Git.

If you do not already have a GitHub account, you can sign up for one at this link.

Once you have a GitHub username, you can continue on to the next page to set up your

Duckietown account.

Step 1: Duckietown Account Setup

1) Configure the Duckietown Shell

The first thing you need to do with dts is to set the Duckietown software distribution you want

to work with. For this version of the book, we use daffy. Set the shell to use the daffy

distribution by running the following command

2) Get a Duckietown Token

Now your Duckietown Shell needs a Duckietown token. The Duckietown Token allows you to

authenticate yourself and your robots against the Duckietown network.

You can make a Duckietown account for free from the Duckietown Hub. Make an account

here.

The token is a string of letters and numbers that looks something like this:

To find your token, first log in to your account, then open the profile page in your browser:

Copy your token to use in the next step.

3) Set your token in the Duckietown Shell

You can tell the Duckietown Shell who you are by running the command below and following

the instructions presented in the shell

Expected Result This should output a path ending in dts.

What you will need You have completed all of the steps in the previous

Setup - Laptop section.

What you will get Your laptop configured with the Duckietown development

environment and ready to run Duckietown robots and

learning experiences.

dts --set-version daffy

dt1-7vEuJsaxeXXXXX-
43dzqWFnWd8KBa1yev1g3UKnzVxZkkTbfSJnxzuJjWaANeMf4y6XSXBWTpJ7vWXXXX

https://github.com/duckietown
https://github.com/join
https://hub.duckietown.com/signup/
https://hub.duckietown.com/signin/
https://hub.duckietown.com/profile/

Checkpoint �

Run the following tests to check your setup:

If you have encountered issues or something is not behaving as expected, please stop here,

it is a good time to ask for help on Stack Overflow.

You can join the Duckietown community on Slack at this link.

There you can request an invitation to the Duckietown Stack Overflow, by following these

instructions.

Step 2: Docker Account Setup

Duckietown leverages containerization to ensure software portability and reproducibility.

Most procedures entail the use of docker operations behind the scene. That is why we need

to set up the logins for docker within dts.

We use DockerHub to distribute the containerized version of its software modules, and most

Duckietown procedures entail some docker operations behind the scenes.

If you are unfamiliar with Docker, we strongly recommend reading the following reference

page to gain a working understanding of this tool: The Duckietown Intro to Docker

1) Create a DockerHub account

If you do not have one already, you can sign up for a DockerHub account at this link.

Make an access token

Follow the instructions on this page to create a new personal access token on DockerHub.

2) Log in to Docker

Once you have an account on DockerHub and an access token, you can test them by

logging in using the command,

dts tok set

Test If the Duckietown Shell was installed correctly, then you can

run a command like this

Expected Result Verify that the version of the commands is set to daffy.

dts version

Test Check if your token was successfully by running

Expected Result This should output a message like the following,

dts tok status

dts : Correctly identified as uid = ***

docker login -u DOCKER_USERNAME

https://join.slack.com/t/duckietown/shared_invite/zt-21zgbg3wk-SnejN9XG3SEaHHKuHqDWkg
https://duckietown.slack.com/archives/CHHQJ0E0H/p1670874390660429
https://hub.docker.com/duckietown
https://hub.docker.com/signup
https://docs.docker.com/docker-hub/access-tokens/

where DOCKER_USERNAME is the username you chose when signing up on DockerHub. You

will then be prompted for your password, paste the access token we created earlier and

press Enter .

3) Configure shell

We are now going to provide the same username and access token to the shell in order to

automate most of the back-end operations involving docker.

These credentials are only stored locally;

Never use your account password instead of an access token;

You can pass wour DockerHub credentials to the Duckietown Shell by running the following

command,

Checkpoint �

Before we move on, let us make sure you have set our credentials correctly.

Never skip a checkpoint!

If you have trouble with any of these commands, see the FAQs section below.

FAQs

If you continue past a test that did not work, you will have further software issues down the

line, and they will be more complex to fix. Instead, if you do not get the expected outcome at

any checkpoint:

First check the troubleshooting guide below.

Attention

dts config docker credentials set \
 --username DOCKERHUB_USERNAME \
 --password DOCKERHUB_ACCESS_TOKEN

With an extra positional argument, one could specify a custom docker registry

server other than docker.io. Check dts config docker set --help for more

details.

For developers

Tip

Test If your Docker login was successful, you should be able to run

Expected Result You should see an output similar to the following,

dts config docker credentials info

Docker credentials:
. registry: docker.io
. username: DOCKERHUB_USERNAME
. secret: DOCKERHUB_ACCESS_TOKEN

If you run into any issues that can’t be solved using the troubleshooting section, join the

Duckietown community on StackOverflow and Slack following the instructions below

and search for previous solutions.

You can join the Duckietown community on Slack at this link.

There you can request an invitation to the Duckietown Stack Overflow, in particular, following

these instructions.

Setup - Duckiebot SD Card

Here we will learn who to initialize an SD card with the Operating System that will run on the

Duckiebot on-board computer. This procedure is called flashing, or burning of the SD card.

If you are using a microSD to SD card adapter, make sure the adapter does not

have the write protection enabled. Check this link to learn more.

Troubleshooting

SYMPTOM I mistakenly set a wrong/unwanted username or password.

How can I update the credentials?

RESOLUTION Just run the command again with the correct credentials. Only

the latest inputs are stored for the same docker registry.

Troubleshooting

SYMPTOM I would like to remove my stored docker credentials. How

could I achieve that?

RESOLUTION Simply use a text editor to remove the section

docker-credentials in ~/.dt-shell/config.yaml file.

What you will need An SD card of size at least 32 GB

At least 20 GB of free space on the computer

An internet connection

SD card reader

Duckietown Shell, as configured in Step 3: Duckietown

Shell Installation.

Docker, as configured in Step 2: Docker Installation.

Duckietown Token, as configured in Setup - Accounts.

30 minutes on average (depends on internet connection

and SD card adapter used)

What you will get A flashed Duckiebot SD card, ready to be used to give life to

your Duckiebot.

Though the suggested operating system for this operation is Ubuntu, this should

work on any Unix-like operating system. If you are using dts through WSL or

experience any issues while performing this procedure, when prompted to enter the

device name, simply provide a path to a file, for example

/home/user/duckiebot_sd_card.img. The program will proceed by creating a disk

image in that file instead. You can later transfer it to an SD card using any standard

flashing tool, e.g., etcher, dd.

For non-Unix-like systems

Note

https://join.slack.com/t/duckietown/shared_invite/zt-21zgbg3wk-SnejN9XG3SEaHHKuHqDWkg
https://stackoverflow.com/c/duckietown/questions
https://duckietown.slack.com/archives/CHHQJ0E0H/p1670874390660429
https://kb.sandisk.com/app/answers/detail/a_id/1102/~/sd%2Fsdhc%2Fsdxc-memory-card-is-write-protected-or-locked

Step 1) Choose a name for your robot

Pick a hostname for your robot. This will be the name of your robot and has to be unique

within a fleet of robots connected to the same network. A valid hostname satisfies all the

following requirements:

it is lowercase

it starts with a letter

it contains only letters, numbers, and underscores

Step 2) Burn the SD card

There are two interfaces to the process of burning a Duckiebot SD card:

GUI: A graphical wizard-like interface;

CLI: A terminal-based command line interface (for those who crave the terminal

experience);

Choose the interface that best fits your preferences and skip the other.

Burn the SD card - GUI

Step-by-Step Instructions

Please note: You will need to specify the model of your Duckiebot when initializing

the SD card.

If you have a Duckiebot with a 2GB Jetson Nano - the model is DB21M
If you have a Duckiebot with a 4GB Jetson Nano - the model is DB21J
If you are not using a Jetson Nano, the model is the model of your Duckiebot

(ex. DB19 or DBR4)

Plug the SD card in your computer using an SD card reader. If your computer does not have

one, you will find a USB to microSD card adapter in your Duckiebot kit.

Initialize the SD card by running the following command,

A new window similar to the one shown below will pop up,

GUI - Graphical wizard CLI - Command line

Attention

dts init_sd_card --gui

file:///tmp/jb/_build/html/gui.html
file:///tmp/jb/_build/html/cli.html

Fill in the fields according to the Duckiebot you are initialization, the SD card you are using,

and the WiFi network details.

If you need to configure EAP (Extensible Authentication Protocol) protected
networks, use the CLI version of the SD card flashing procedure described in Burn

the SD card - CLI.

Given the danger of choosing a wrong device to flash (which can result in data loss

and corruption of the Operating System), it is necessary to specify the size of the

SD card you are using, so that the program will only show you options that are

compatible with your input.

Once you completed the form, click on the Confirm button to return to the terminal and

confirm the device to be flashed. When prompted, type in or copy-paste the device name

from the list and press Enter .

At this point, the SD card is being flashed. On successful end of the procedure, the drives

will be automatically ejected and you will be instructed to remove the SD card from the SD

card reader and insert it into the Duckiebot’s SD card slot.

If you experience any issues while flashing the SD card, make sure you check the

Troubleshoot - SD card flashing section before asking for help on Stack Overflow.

Troubleshoot - SD card flashing

Note

Warning

Troubleshooting

SYMPTOM The SD card doesn’t seem to be written.

Burn the SD card - CLI

Please note: You will need to specify the model of your Duckiebot when initializing

the SD card.

If you have a Duckiebot with a 2GB Jetson Nano - the model is DB21M
If you have a Duckiebot with a 4GB Jetson Nano - the model is DB21J
If you are not using a Jetson Nano, the model is the model of your Duckiebot

(ex. DB19 or DBR4)

Video Tutorial

Step-by-Step Instructions

The flashing process seemed too fast, there is no data on my

SD card.

RESOLUTION Check if your SD card has a write protection switch.

Make sure you inputted the correct drive name during the

flashing procedure.

Troubleshooting

SYMPTOM The flashing procedure fails with a Bad archive error.

RESOLUTION This happens when the downloaded compressed disk image

file appears corrupted. You can force the re-download by

adding the option --no-cache to the init_sd_card command.

Troubleshooting

SYMPTOM The verification process fails with error Please set up a

token using "dts tok set".

RESOLUTION Make sure you completed the Duckietown token setup

procedure .

Attention

https://vimeo.com/526698325

Plug the SD card in your computer using an SD card reader. If your computer does not have

one, you will find a USB to microSD card adapter in your Duckiebot kit.

Initialize the SD card by running the following command,

where,

Other options are:

The default username and password are duckie and quackquack, respectively.

If you plan on connecting with the Duckiebot over different networks (e.g., at home and in

class), you can list all your networks like in the following example,

There should be no space after the commas.

Watchtowers and traffic lights by default have Wi-Fi not configured, as we recommend hard

wiring them with Ethernet cables. Default Wi-Fi settings for other robot types is

duckietown:quackquack.

Each network defined in the list can support the following arguments:

Make sure to set your country correctly with the --country option (e.g., CA for Canada, CH

for Switzerland, US for the United States of America). Neglecting this sometimes will result in

specific Wi-Fi hot-spots not being seen by the Duckiebot.

Additional options for init_sd_card exist. For a full list of the options, run:

After you run the dts init_sd_card command, follow the instructions that appear on screen.

dts init_sd_card --hostname HOSTNAME --type TYPE --configuration
CONFIGURATION --wifi WIFI

--hostname Name of the robot to flash the SD card for.
--type The type of your device. Types are `duckiebot`
(default),
 `watchtower`, `traffic_light`.
--configuration The model of your robot. This is associated with
 `--type` option. E.g. `DB21J`, `DB21M`, `DB19`, or
`DB18`.

--wifi A comma-separated list of WiFi networks, aeach network
is passed in the format ![wifi_name]:![wifi_password]
 default: duckietown:quackquack
--country Country code.
 default: US

Note

dts init_sd_card ... --wifi
duckietown:quackquack,myhomenetwork:myhomepassword,myuninetwork:myunipasswo
rd

Note

 - Open networks (no password): "ssid"
 - PSK (Pre-shared key) protected networks: "ssid:psk"
 - EAP (Extensible Authentication Protocol) protected networks:
"ssid:username:password"

dts init_sd_card --help

Part of this procedure includes accepting the Duckietown Software License, Terms and

Conditions and Privacy Policy, as well as robot configuration-specific licenses due to the

presence of third party software in the SD card.

The next step is that of choosing among all the devices connected to your computer, which

one represents the SD card that you want to flash for your Duckiebot. Given the danger of

choosing a wrong device (from data loss to OS files corruption), the program will guide you

through this step by asking the size of the SD card. Devices that do not match the given size

will not be shown.

Type in or copy-paste the device name from the list and press Enter .

At this point, the SD card is being flashed. On successful end of the procedure, the drives

will be automatically ejected and you will be instructed to remove the SD card from the SD

card reader and insert it into the Duckiebot’s SD card slot.

If you experience any issues while flashing the SD card, make sure you check the

Troubleshoot - SD card flashing section before asking for help on Stack Overflow.

Troubleshoot - SD card flashing

Setup - Booting the Duckiebot

You are now ready to boot up your Duckiebot!

Troubleshooting

SYMPTOM The SD card doesn’t seem to be written.

The flashing process seemed too fast, there is no data on my

SD card.

RESOLUTION Check if your SD card has a write protection switch.

Make sure you inputted the correct drive name during the

flashing procedure.

Troubleshooting

SYMPTOM The flashing procedure fails with a Bad archive error.

RESOLUTION This happens when the downloaded compressed disk image

file appears corrupted. You can force the re-download by

adding the option --no-cache to the init_sd_card command.

Troubleshooting

SYMPTOM The verification process fails with error Please set up a

token using "dts tok set".

RESOLUTION Make sure you completed the Duckietown token setup

procedure .

What you will need A flashed Duckiebot SD card

A Duckiebot of the same model chosen during the SD

card flashing procedure

A fully charged battery

What you will get A Duckiebot successfully booted up and connected to the WiFi

network.

Insert the SD card as shown in the video below into your robot and push the button on the

battery to power up the Duckiebot. While the video shows the procedure being performed on

a DB21M robot, this procedure is the same on all Duckietown robot models.

Be sure your Duckiebattery was fully charged as shown in the assembly steps

before attempting to boot.

The external power supply might not be able to provide sufficient current if the

battery is low, causing the on-board computer to reboot. Should that happen during

the first boot, you will likely have to burn the SD card again.

Monitoring the First Boot

Make sure your desktop or laptop computer is connected to the same WiFi network the

Duckiebot was instructed to connect to.

Then open a terminal and run the following command,

The command above will show a list of all the Duckiebots reachable on your local network.

For each Duckiebot, the tool will also show the model that was used to flash the SD card, the

hostname of your robot, and a status indicator.

Leave this tool open, it will refresh automatically every second, so there is no need to

manually restart it.

Within a few minutes of powering up the robot with the SD card in, your Duckiebot will

appear in the list with status Booting. If it does not appear within 5 minutes, check out the

Troubleshooting guide at the end of this page.

Fig. 41 Output of ‘dts fleet discover’

Warning

dts fleet discover

https://vimeo.com/527364179

During the first boot, the robot will automatically reboot several times. Wait for the

“Status” column to read “Ready” and turn solid green.

Software and Hardware updates

Once the status of your Duckiebot is Ready, you are ready to update your Duckiebot. The

software update is required now, while the hardware update is conditional and also can be

carried out later.

Software update

Please update your Duckiebot’s software stack with the latest by following: Debug -

Duckiebot Update.

Hut Microcontroller update

The reader does not need to perform this right now. This is mentioned here so that the

reader is aware of the existence and a potential need of this procedure. The Hut connects to

various electronics beyond the Duckiebot computer, e.g. motors, LEDs. If you run into

problems with the operations in the Duckiebot Operations section later, and it is related to

the hardware on the HUT, you are then suggested to follow the Debug - Re-flash

Microcontroller page to update the HUT firmware.

Confirming the First Boot

Once the Duckiebot is Ready and Updated (software), you are ready to access your

Duckiebot’s Dashboard.

Open your browser and visit the URL http://HOSTNAME.local/. You will see a page similar

to the following,

Fig. 42 Duckiebot’s dashboard first setup page

This is the dashboard of your Duckiebot. The Dashboard is built using a framework called

\compose. You configure it in in Setup - Duckiebot Dashboard.

If you can’t access the dashboard, check out the Troubleshooting guide at the end of this

page.

Attention

Powering off the Duckiebot

Do not test these commands before the Duckiebot has completed its first boot. If

the Duckiebot gets rebooted/shutdown while the first boot has not finished, the

Duckiebot might become unreachable and you will have to reflash the SD card.

To turn off your Duckiebot, use the command,

The shutdown procedure can take up to 20 seconds.

To reboot your Duckiebot, use the command,

You will learn more about how to handle your Duckiebot in Handling - Duckiebot DB21.

Troubleshoot - First Boot

Warning

dts duckiebot shutdown HOSTNAME

dts duckiebot reboot HOSTNAME

Troubleshooting

SYMPTOM I pressed the power button on top but nothing happened.

RESOLUTION Power on your Duckiebot using the button on the side of the

Duckiebattery. The top button is only for powering off. You can

also learn more about how to handle your Duckiebot in

Handling - Duckiebot DB21.

Troubleshooting

SYMPTOM My Duckiebot does not appear to boot after pressing the

power button on the battery. I don’t see a green light on the

HUT or the Jetson Nano.

RESOLUTION Refer back to Assembly - Duckiebot DB21J, and check each

of your cable connections. Confirm the start and end port of

each power cable from the battery. The battery must be

charged fully as shown in the first assembly step.

Troubleshooting

SYMPTOM My Duckiebot is getting power but does not appear to be

booting. The Wifi dongle is not blinking.

RESOLUTION Make sure you flashed the SD card following the instructions

in Setup - Duckiebot SD Card.

Troubleshooting

SYMPTOM My Duckiebot is getting power but does not appear to be

booting. The Wifi dongle is not blinking.

RESOLUTION Make sure that you correctly specified the model of your

Duckiebot when initializing the SD card.

If you have a Duckiebot with a 2GB Jetson Nano - the model

is DB21M

Setup - Duckiebot Dashboard

This section shows how to install the Duckietown Dashboard on the Duckiebot.

The \compose\ platform

\compose\ is a CMS (Content Management System) platform that provides functionalities for

fast-developing web applications. Custom applications are developed as external packages

that can be installed using the built-in Package Store.

The Duckiebot Dashboard is a package that you can install on your instance of \compose\

running on your Duckiebot. To make it easier for you to get started, we provide a Docker

image with \compose\ and all the packages you need already running on your Duckiebot

after the first boot. Follow the instructions in the next step to get started.

Visit the official documentation page if you would like further information about how

\compose\ works.

Setting up the Duckiebot dashboard

Video Tutorial

If you have a Duckiebot with a 4GB Jetson Nano - the model

is DB21J

If you are not using a Jetson Nano, the model is the model of

your Duckiebot (ex. DB19 or DBR4)

Troubleshooting

SYMPTOM The Duckiebot screen does no turn on even though it shows

up in dts fleet discover and the dashboard is accessible.

The ToF and front bumper are not detected on the dashboard

Components page.

RESOLUTION Disconnect the ToF sensor from the front bumper and use the

long cable that originally connected the front bumper to the

HUT to connect the ToF sensor directly to that same HUT port.

Then reboot. This bypasses a known multiplexer issue on

some bumpers.

Troubleshooting

SYMPTOM My Duckiebot appears to be booted and the screen is on, but I

can’t see it using dts fleet discover.

RESOLUTION Your Duckiebot must be connected to the same network as the

computer you are using to run the dts commands. Check the

networking section of the book to see if your network is set up

correctly.

Troubleshooting

SYMPTOM I am not sure whether my Duckiebot is properly initialized.

RESOLUTION As long as the fleet discover tool shows ready, your

Duckiebot should be ready. You can also visit the dashboard to

confirm that the Duckiebot is serving its status. Generally as

long as you see the Duckiebot dashboard is up, your

Duckiebot should be correctly initialized.

http://compose.afdaniele.com/docs/latest/index

Step-by-Step Instructions

You can find your duckietown dashboard at:

If the above address does not work, remove the .local part and just use

If .local does not work, that means your router’s default domain name is set to

something else. It will be helpful if you figure out what that is. And keep in mind that

any instruction later that includes .local should be just ignored.

You should be greeted by the dashboard shown here. Read the steps below before

continuing through the setup page.

Steps 1 and 2: Already done!

By default, \compose\ uses Google Sign-In to authenticate the users. In Duckietown, we use

authentication based on personal tokens.

You will notice that the first two steps in the dashboard already appear to be completed. Do

not worry about configuring Google sign-in (Step 1) or creating an administrator account

(Step 2) for now, a new administrator account will be automatically created the first time we

log in using a Duckietown token later on.

Step 3: Configure your dashboard

http://![YOUR_DUCKIEBOT_NAME].local/

http://![YOUR_DUCKIEBOT_NAME]/

Note

You can complete these fields as you please.

You can always update your choices through the Settings page after you finsh the

setup process.

If you are seeing an error due to permissions, take a look at the Booting FAQs.

When you are happy with your choices, click on Next.

Step 4: Complete the setup

The Step 4: Complete tab should now be open, as shown below.

You can go ahead and press Finish.

Note

Tip

First Login

If everything went as planned, the dashboard is now configured and ready to go!

You should be able to see the login page, as shown below.

Since your dashboard does not have an administrator account yet, the first user to

login will be automatically assigned the role of administrator. If you have multiple

tokens, make sure to keep note of which one you used for the first login.

If you have not retrieved your personal Duckietown Token as described in Setup - Accounts

yet, it is now time to do so. You should be able to retrieve your token by visiting the page

here:

https://www.duckietown.org/site/your-token

Once you have your personal Duckietown token, go ahead and click on the button Sign in
with Duckietown.

Note

https://www.duckietown.org/site/your-token

Copy/paste or type in your personal token and press Login. Wait for the token to be

validated, and if your token is correct, you will be redirected to your profile page, similar to

the one shown below.

As you might have noticed, the side bar to the left now shows many more pages. Some

pages are accessible by all users (e.g., Robot), others only by administrators (e.g., Settings,

Package Store).

Take your time to visit all the pages and get comfortable with the platform. We will discuss

the functionalities offered by each page in the next sections.

Handling - Duckiebot DB21

What you will need An assembled DB21 robot (e.g., DB21M, DB21J);

An initialized DB21 with firmware version 1.2.2 or
newer. Check your current firmware version before

proceeding.

The box above contains important information on the requirements. Make sure to

read and follow them before proceeding.

In this manual, we use DB21 to refer to any version of the Duckiebot with prefix

DB21, such as, DB21J, DB21M, etc.

Duckiebot DB21 handling tutorial video

How to charge a DB21

To charge your Duckiebot, follow these steps:

Plug in the charging cable to the free microUSB port on the HUT.

Note: to minimize mechanical stress on the HUT we recommend plugging in the charging

cable once, and leaving the USB port end free to plug and unplug from charging instead. You

can arrange the cable under the DB21 top plate during operations for cable management.

Plug in the charger to a 5V 2A source.

the battery can draw up to 2A. Feeding a higher amperage will not be a

problem, but wrong voltage will send the battery in protection mode.

If the Duckiebot is turned on when charging, a battery charge indicator will appear on

the top right of the screen. If the Duckiebot is turned off, the LEDs will turn on. In both

cases, a small LED on the HUT near the charger port will turn green, indicating incoming

power.

How to power off a DB21

What you will get Knowledge on standard protocols to turn on, turn off, charge,

and update the Duckiebattery software version on a DB21

robots;

Note

Note

Note

https://vimeo.com/527038785

The proper shutdown protocol for a DB21 requires having the Duckiebattery

software version 2.0.0 or newer. To check the version of your battery, follow the

instruction to “Verify current battery version” on How to update a Duckiebattery.

Make sure the Duckiebot has completed the booting process. You can verify this by checking

the “Status” after running dts fleet discover on your laptop: a green Ready message will

indicate that the Duckiebot has completed the booting process.

There are three methods to power off a DB21:

1. Using the top button (preferred):

1. Press the top button (not the battery button) for 5 seconds and release;

2. What to expect:

1. The top button will blink for 3 seconds;

2. The Duckiebot front and back LEDs turn off;

3. In about 10 seconds, the on-board computer and the fan will shut down;

3. Troubleshooting: If the display just switched to the next page and the top button

did not blink, try again and push harder on the top button during the 5 seconds;

2. Using dts:

1. dts duckiebot shutdown ![ROBOT_NAME]

2. What to expect:

1. In about 10 seconds, the on-board computer and the fan will shut down;

2. If the charging cable is not attached, the front and back LEDs will also turn

off;

3. Through the Duckiebot dashboard:

1. Open a browser

2. Navigate to http://![ROBOT_NAME].local

3. In the Top-Right corner, click on the Power options, and choose “Shutdown”. Then

confirm the action.

4. What to expect:

1. In about 10 seconds, the on-board computer and the fan will shut down;

2. If the charging cable is not attached, the front and back LEDs will also turn

off;

The following “hard” power shutdown should be only be used if the three methods

above failed to shut down the Duckiebot, as it might lead to software corruption.

As a last resort, one could still perform a “hard” power shutdown of the DB21:

ssh duckie@![ROBOT_NAME].local sudo poweroff;

Unplugging the microUSB cable from the port marked as 5Vraspi on the HUT;

How to power on a DB21

To power on a DB21 robot, press the button on the battery once.

The Duckiebot LEDs, as well as the on-board computer LED will turn on.

After a few seconds, the Wi-Fi dongle will start blinking. The Duckiebot LEDs will then turn to

a steady white color, followed by the button and screen on the top plate powering on, as

shown in the tutorial video above.

How to SSH to the Duckiebot

Warning

Warning

TODO
Replace “tutorial video above” with a proper reference once we have the

video directive working.

Next, let us try and log in onto our robot using the SSH (Secure Shell) protocol. We can do

so by running the command,

The default password is quackquack.

How to update a Duckiebattery

To update the software running on the microcontroller in the Duckiebattery, or just checking

its current version, use the following instructions.

Important:

1. Before the battery upgrade, please make sure the battery has at least 15% of charge.

2. Run all the following commands on the desktop/laptop

Make sure the Duckiebot is powered on and connected to the network. You can verify the

latter by launching, e.g., dts fleet discover and finding that your Duckiebot is on the list.

1. Please update the duckietown-shell utility:

1. pip3 install --user --upgrade --no-cache-dir duckietown-shell

2. dts update

3. dts desktop update

2. Update the Duckiebot:

1. dts duckiebot update ![ROBOT_NAME]

3. Reboot the Duckiebot:

1. ssh duckie@![ROBOT_NAME].local sudo reboot

2. Wait until the Duckiebot reboots and the display shows information (especially

about the battery).

3. You could verify the battery related software is up and running by checking

whether the display reacts correctly to charging states when a charging cable is

plugged in and unplugged.

4. Upgrade the battery firmware:

1. dts duckiebot battery upgrade ![ROBOT_NAME]

1. Note: When prompted to “double-click” on the battery button, make sure to

quickly click twice the battery button.

2. Note: Do not worry if you are unsure if you actually pressed the button twice

or not, as the battery upgrade process will verify this.

3. Follow the instructions in the terminal.

2. If the command finished with the error: SAM-BA operation failed

INFO:UpgradeHelper:An error occurred while flashing the battery.

ERROR:dts:The battery reported the status 'GENERIC_ERROR', please try

flashing again with: dts duckiebot battery upgrade --force ![ROBOT_NAME]

3. If the command finished with any other error: single press the battery button, and

start from step 3 again one more time. If there are still errors, please report on

StackOverflow.

5. Prepare for post-upgrade checks

1. If the battery indicates the charging states correctly, and shows the percentage

number normally, proceed to step 6
2. If the display shows “NoBT” (No battery detected), then single press the battery

button, and run:

1. ssh duckie@![ROBOT_NAME].local sudo reboot

2. Wait for the reboot (as described in step 3)

3. Then proceed to step 6
6. Verify current battery version:

1. Method 1:

1. dts duckiebot battery check_firmware ![ROBOT_NAME]

2. Verify the battery version should be 2.0.2 or newer

2. Method 2:

ssh duckie@HOSTNAME.local

1. Open a browser window

2. Navigate to http://![ROBOT_NAME].local/health/battery/info

3. Verify the battery version should be 2.0.2 or newer

How to update a HUT

Instructions on how to flash a Duckietown HUT board can be found here.

Reflashing a HUT is rarely needed. A notable exception is for HUT version 3.15

which comes with DB21s. The HUT version can be read on the board itself.

Operation - Use the Dashboard

This section shows how to use the Duckietown Dashboard on the Duckiebot.

What is in the Dashboard?

The following video provides a brief tour of the most important features of the Duckietown

Dashboard on your Duckiebot.

To see all the available dashboard components, you will need to first log in. Once logged into

the dashboard, you will see a navigation panel down the left side of the page. The 7

available subpages are:

Troubleshooting

SYMPTOM The power button on top does not shut off the Duckiebot.

RESOLUTION The power button needs to be held for three seconds and then

released. If this still does not work, run dts duckiebot

update <your_robot> and then use dts duckiebot reboot

<your_robot>. You may also need to re-flash your HUT

following the procedure described in Debug - Re-flash

Microcontroller if you have not already.

Troubleshooting

SYMPTOM My Duckiebot has a very low battery charge and is stuck in a

boot cycle.

RESOLUTION Unplug all cables from the HUT except port # that is used to

charge the battery. Allow the battery to charge for at least 5

hours before plugging all cables back in their nominal

positions.

Note

PAGE NAME DESCRIPTION

Portainer
A nice GUI tool for seeing all containers

running on a Duckiebot

File Manager
A file manager for managing the files on the

robot

Robot A summary page for the robot status

Profile Information for your duckietown account

Package Store
A package store contain all available

packages for your Duckiebot

Users
Advanced Feature: Allow multiple students

to use one Duckiebot

Settings
Advanced Feature: Change configuration of

your Duckiebot dashboard manually

Restful API
Advanced Feature: Documentation to the

RestAPI exposed by the Dashboard.

Let’s dive into a few pages that you will need to get started.

The Robot Page

In this page you will find several tabs that help you see and understand the status of your

Duckiebot. The default tab is Info.

Robot - Info

In this tab, you can find information for your robot - including your robot name, type,

configuration, and critical information such as CPU usage, temperature, and other crucial

robot vitals.

From this page you can read the Duckiebot’s firmware version, i.e., the version of

the base image used during initialization.

Robot - Mission Control

This is the Mission Control tab.

Note

In this tab you can see what the Duckiebot sees via the iamge stream, the lateral and

angular speed of your robot, and a plot of left and right motor speed. This is the tab that lets

you monitor and control your Duckiebot.

The page contains 4 blocks by default. Feel free to drag them around and

rearrange them as you please. You can also use the menu button of each block to

resize them.

The Health Page

This is the Health Page. It will show you a plot of the robot’s health status such as

temperature, frequency, and CPU usage. It is a good debugging tool to watch your code’s

resource usage.

Tip

Troubleshooting

SYMPTOM I do not see the camera image on the dashboard.

RESOLUTION This could be caused by a few issues. Make sure you are

accessing the dashboard using

https://ROBOT_HOSTNAME.local/ instead of directly

accessing the dashboard using robot IP address. Make sure

the lens cap has been removed from your camera. If you still

don’t see an image, jump to the Operation - Make it See page

for more debugging options.

The Architecture Page

This is the Architecture Page. It will allow you to visualize all the published ROS topics and

see their details. It is a useful tool to see what is running and what is not. You can also use

this tool as a replacement of rqt-graph. For more instructions on rqt-graph, you can see it

here

The Portainer Page

Portainer is a provided tool for managing all the docker containers that are running on the

Duckiebot. Using portainer tools, you can quickly see the status of the containers on your

Duckiebot.

You can select containers to see all the containers on the Duckiebot.

For more information about portainer, you can find them in this page.

Hardware Component Testing

This section is designed and tested for DB21-series Duckiebots and onwards.

This section shows how to use the Dashboard to test different individual hardware on a

Duckiebot.

Assuming you have your Duckiebot assembled, the SD card prepared and the Software

updated after booting. Before diving into the beautiful yet could-be-complicated world of

robotics and coding, let’s do a few simple individual hardware component tests to verify the

sensors, actuators, computation and power units work.

The purpose of these tests is to help us be confident in the hardware, and avoid wasting time

debugging software without knowing whether the hardware works.

In case you encounter any erroneous behaviors of any of your hardware components, or

have any questions about the process, please check out a later sub-section on this page for

FAQs, reporting and getting help.

Where to find the Hardware Tests

The tests could be accessed on the Components tab on the ROBOT page of the

Dashboard.

In each component with the button Test Hardware, the test description and expectations

would be shown in a modal (an on-page pop-up) when the button is clicked. Before running

any test, it is recommended to watch the videos in the next section at least once to see how

the robot would behave in each test.

Note

You can always perform these tests.

Later on, if you have problems receiving sensor readings, commanding the

motion, or connecting to the robot, maybe you could run these tests again

before debugging the code.

Demos of the Hardware Tests

These videos would be what you typically need to do or would see, when performing the

tests.

(You might want to manually set the video resolution to 1080P, instead of Auto.)

Tip

https://vimeo.com/844122131/f69dfe1a26

Component Demo Video

Battery

Camera

Left motor

Right motor

Left encoder

Right encoder

Screen

https://vimeo.com/844122147/19640c8604
https://vimeo.com/844122163/a62aef34ad
https://vimeo.com/844122181/af78e0ab86
https://vimeo.com/844122194/735466a0e3
https://vimeo.com/844122205/c3a58a438d
https://vimeo.com/844122224/0bfeb1de3d
https://vimeo.com/844122237/464c48f80b

Component Demo Video

IMU

Power button

Wifi adapter

Front LEDs

Back LEDs

Time-of-Flight distance sensor

FAQs, Reporting Problems & Getting Help

Problems could arise due to faulty hardware, misleading setup instructions, erroneous

handling etc. Let’s deal with them, patiently and efficiently. This part contains:

some FAQs

how to gather logs and enrich the context of an issue reported

places and formats to post questions and feedback

FAQs

Here are some common possible issues and resolutions you could already try. If the

suggestions do not lead to a successful outcome, do not spend too much time trying it.

Maybe we did not make it clear enough. Feel free to report to the team as mentioned in this

https://vimeo.com/844122251/76a9c2693b
https://vimeo.com/844122268/5052dce00d
https://vimeo.com/844122279/bc31caf7bb
https://vimeo.com/844122292/c40771c2f7
https://vimeo.com/844122305/b0e962d075
https://vimeo.com/844122323/f6cf7d485c

part.

Troubleshooting

SYMPTOM When I click on the “Test Hardware” button:

the button does not seem to react / is grayed-out; or

the modal shows up, but there is no content in it.

RESOLUTION This is likely because the duckiebot-interface container did

not start or has not finished initialization successfully. You

could go to the “Portainer” page of the Dashboard, and select

Containers on the left nav-menu. Then, you could try these:

First, look for the duckiebot-interface container, and make

sure it exists. If not, try from your host computer: dts

duckiebot update ![ROBOT_NAME]. After the command

finishes, repeat this check in a few minutes.

If it does exist, check the logs of the container (Ref: how to

check logs in portainer). Ask

Troubleshooting

SYMPTOM Can I close the modal while the test is running?

RESOLUTION Yes. It will be alive in the background. But you should avoid

doing so. Please run only one test at a time, wait until you

could check for the expected outcomes, and then close the

modal once all done.

When running tests for sensors like camera or ToF, the data

would be streamed. It is fine to close the modal after you could

determine whether the test passed or failed. On the other

hand, for tests with a progress bar, wait for the described time

period. Only the LEDs might need a little longer time than

written in the description (please check the next FAQ).

Troubleshooting

SYMPTOM My front and back LEDs seem stuck at a color when

performing test. Is this normal?

RESOLUTION The LEDs ideally should be changing brightness or color (or

both) all the time during the test. However, it could occur that

the frequent commands issued to the LEDs creates a

temporary congestion and make the system busy. And the

LEDs would appear to be neither changing color nor

brightness. The situation should only last for less than 30

seconds.

Please wait for the duration patiently to see if the test

proceeds.

If it is ever longer than that, please don’t hesitate to contact

our team and report the problem.

Troubleshooting

SYMPTOM Would it be harmful if the Duckiebot is turned off during some

https://docs.portainer.io/user/docker/containers/logs

How to provide a rich context when reporting problems

You are of course welcome to ask us your questions directly anytime. In order to get back to

you faster and debug efficiently, having richer context would help a lot! That is also why, in

the modals you see for each hardware test, there are the buttons for:

Download logs of this ROS node: by clicking this button, a text file will be

downloaded from your Duckiebot to your personal computer, containing the logs of the

relevant ROS node.

Download docker container logs: by clicking this button, a new modal should pop

up, allowing selection of the docker container(s), that is related to this test. The relevant

container(s) is/are typically mentioned in the “Logs Gathering” section of the test

modal.

Here’s a potential example of organizing information in one issue:

1. I am performing hardware test via the Dashboard for component: …
2. I followed the instructions until this step / am waiting for this outcome: …
3. It’s not clear what to expect. / The expectation is …, but I see …
4. The logs for the ROS node: file/pasted text
5. The logs for the relevant containers: file/pasted text

Not only does the rich context help the team recognize the problem and provide solution

faster, the community could also benefit, by knowing clearly if someone had an

identical/close problem before. And you might be able to find useful answers just by

searching our StackOverflow.

In the next sub-section, we recommend some tags and endpoints for communicating the

issues to.

Where to post questions & feedback

(Preferred) StackOverflow for Duckietown

It is recommended to use these tags when posting on StackOverflow

robot-setup

hwtest, hw tests, hardware-test, hardware-tests (and other similar)

hwtest-Name of the component
You could also ask on the Duckietown Slack, on the help-robot-setup channel. But it

is more preferable to post technical issues on our StackOverflow, and any other

feedback on Slack.

Here are some kinds of “any other feedback”:

The tests ran but the description clarity could improve here and here.

The test design would be better if the content is this.

test runs?

RESOLUTION No. These are very simple hardware tests. It is perfectly safe

to kill any programs or power down the robot.

Troubleshooting

SYMPTOM Why, in the camera test, the image appears smaller than the

sensor data size (see start_gui_tools in coming sections of

this book)?

RESOLUTION The camera stream in the Dashboard hardware test is resized,

such that it fits better in the pop-up modal. The actual data

size is always the same as what ROS indicates.

Tip

https://stackoverflowteams.com/c/duckietown/questions

Operation - Make it Move

This section describes how to make your Duckiebot move.

Troubleshooting sections are provided at the end of each operation page - start

there if you run into any issues.

Keyboard control

The easiest way to move a Duckiebot is by using the keyboard_control command provided

in the Duckietown shell. This video shows how to drive a Duckiebot using the keyboard,

through the Duckietown Shell.

Option 1: Use the GUI (For Linux Users)

If you are using Mac OSX, see Option 2.

To move your Duckiebot using your computer’s keyboard open a terminal and run:

For all operation commands that use the Duckiebot’s name - replace

![DUCKIEBOT_NAME] with just the Duckiebot’s hostname, do not include .local part

that you used previously to access the dashboard.

After startup, the keyboard_control command will open an interface window. Make sure the

window is active by selecting it, and use the keys in the table below to command your

Duckiebot:

Fig. 43 The keyboard control graphical user interface.

The following keys control the Duckiebot:

KEY Function

Arrow Keys - ↑ ↓ ← → Steer your Duckiebot

q Quit

a Turn on lane following (see note below)

s Stop lane following

i Toggle Anti-Instagram

Tip

dts duckiebot keyboard_control ![DUCKIEBOT_NAME]

Attention

The a , s , and i functions require the lane following demo to be running. For

now, just try out the keyboard control and get your Duckiebot moving!

Option 2: Use the CLI (For Mac Users)

If you are using MacOSX and find the keyboard interface is not responsive, run the stack

directly on the Duckiebot and use the same keys within the command line interface as listed

in the table above:

Troubleshooting

Note

dts duckiebot keyboard_control ![DUCKIEBOT_NAME] --cli

Troubleshooting

SYMPTOM The Duckiebot does not move, and I cannot see the

commands being sent to the Duckiebot when looking at the

Dashboard > Mission Control page.

RESOLUTION Make sure that the keyboard gui window is active by selecting

it, then try the keyboard commands again. Some keyboard

configurations may require that you use w a s d rather

than ↑ ↓ ← → .

Troubleshooting

SYMPTOM I can see the commands being sent to the Duckiebot (e.g.,

through the Dashboard > Mission Control), but the

Duckiebot does not move. My Dashboard > Robot >
Components page shows a red alert for the HUT.

RESOLUTION If you have a HUT v3.1 you will stumble on this problem the first

time you try to move your Duckiebot. Re-flash your HUT

following the procedure described in Debug - Re-flash

Microcontroller.

Troubleshooting

SYMPTOM I have reflashed the HUT but the joystick commands still do

not work or the Duckiebot operates in a jerky manner.

Additionally, the ToF sensor and front bumper are not detected

on the dashboard Components page. I may also be having

issues with the screen.

RESOLUTION Disconnect the ToF sensor from the front bumper and use the

long cable that originally connected the front bumper to the

HUT to connect the ToF sensor directly to that same HUT port.

Then reboot. This bypasses a known multiplexer issue on

some bumpers that can cause other HUT misbehaviors.

Troubleshooting

SYMPTOM I checked the two troubleshooting issues above, and my

Duckiebot still doesn’t move.

RESOLUTION Check that the duckiebot-interface container is running

Open the Portainer interface and check the running

containers. You should see one that has a name that contains

Operation - Make it See

This section describes how to see what your Duckiebot sees.

Viewing the Image Stream on Your Laptop

The camera image is streaming from your Duckiebot by default on startup. To see it, open a

terminal on your laptop and run:

For all operation commands that use the Duckiebot’s name - input just the

Duckiebot’s hostname, do not include .local part that you used previously to

access the dashboard.

This will start a container with access to the ROS messages of the Duckiebot, including the

image stream from the camera.

Your terminal has now turned into a command line interface running inside of that container

within the Duckiebot. You can exit the container back to your normal terminal interface at any

time by running the exit command. You will learn more about this tool in the Operation -

Tools section.

To view the camera stream, run the following:

The command will open a window where you can view the image.

You will have to select the camera_node/image/compressed topic from the drop-down menu:

duckiebot-interface (exact container name will depend on

your robot version).

You can also determine this by running:

docker -H ![ROBOT_NAME].local ps

and look at the output to find the duckiebot-interface

container and verify that it is running.

If you don’t see the container, your base image is out of date -

update your Duckiebot with the command

dts duckiebot update ![ROBOT_NAME]

Troubleshooting

SYMPTOM Duckiebot goes backwards, even though I command it to go

forward.

RESOLUTION If you have a DB17 or DB18, revert the polarities (plus and

minus cables) of the cables that go to the motor driver (HUT)

for both motors.

dts start_gui_tools ![DUCKIEBOT_NAME]

Attention

rqt_image_view

Fig. 44 The rqt image view window with dropdown menu - select the

camera_node/image/compressed topic.

How to save a picture from rqt_image_view

On the top right of the rqt_image_view window, there is a button to save the current frame to

an image. But don’t save it yet. A little extra setup is needed to be able to view that file later.

Create a folder on you laptop for where you would like to have the image saved to, say

~/duckiebot_images/. Then, launch the start_gui_tools with the following command:

Then, run rqt_image_view again, and use the top-right “Save as image” button to save to

the /duckiebot_images folder. To find that folder, you might need to navigate to Computer

and select / directory in the pop-up dialogue.

dts start_gui_tools --mount ~/duckiebot_images/:/duckiebot_images
[DUCKIEBOT_NAME]

And the saved image from your robot’s view should appear in the folder you created!

Viewing the image stream on the Dashboard

If you followed the instructions in Setup - Duckiebot Dashboard, you should have access to

the Duckiebot dashboard.

Open the browser and visit the page http://![DUCKIEBOT_NAME].local/. Login using your

Duckietown token, and select robot panel on the left hand side navigation bar. Once selected

you should see mission control page there. If you are unfamiliar with the dashboard, you can

find more information here: What is in the Dashboard?

The bottom of the page shows the camera block. You should be able to see the camera feed

in the camera block, as shown in the image below.

By default, the camera stream is throttled down to 8 frames per second. This is to minimize

the resources used by your browser while streaming images from the robot. Feel free to

increase the data stream frequency in the Properties tab of the camera block.

Note: If you see a black image in the camera block, make sure that you removed the

protective cap that covers the camera lens of your Duckiebot.

Viewing the image stream in no-vnc (optional)

For instructions on using the no-vnc tool and viewing the image stream from the remote

Desktop, see the Operation - Software Tools section.

Troubleshooting

Troubleshooting

SYMPTOM I see a black image like this:

Fig. 45 What you see if you leave the camera cap

on.

RESOLUTION Remove the cap of the camera.

Troubleshooting

SYMPTOM When I try to do rqt_image_view, I don’t see the window on

my machine.

RESOLUTION Sometimes the window does not successfully spawn on the

first try. You can Ctrl + c to terminate the process before

trying again.

Troubleshooting

SYMPTOM The images are out of focus.

RESOLUTION The camera focus can be manually adjusted by rotating the

lens of the image sensor. As always with dealing with

hardware, exercise care and do not use force.

If the lens will not rotate, you may need to break the glue. Very

occasionally cameras come with the lens glued in place. Apply

a bit more force the first time you adjust the lens to break the

glue’s adhesion.

Troubleshooting

SYMPTOM I’m getting an error related to libGL when running dts

start_gui_tools

RESOLUTION If you have an error like the following when running dts

start_gui_tools or another command with a GUI on the

Duckiebot, then you are likely having issues with an NVIDIA

graphics card:

libGL error: No matching fbConfigs or visuals found

libGL error: failed to load driver: swrast nvidia

docker

This could occur on a computer that has two graphics cards,

e.g., a NVIDIA GPU and an integrated Intel card. Switch to the

Intel card by following the official guidelines for your OS and

graphics card.

Troubleshooting

SYMPTOM I don’t see any image.

RESOLUTION Use rostopic hz

/![DUCKIEBOT_NAME]/camera_node/image/compressed and

see if the image is being published. Images should be

published at roughly 30 Hz. If the message is not being

published,

Check that the duckiebot-interface is running

Open the Portainer interface and check the running

containers. You should see one called duckiebot-interface,

using image

duckietown/dt-duckiebot-interface:daffy-arm32v7.

Operation - Make it Shine

This section describes how control the LEDs on your Duckiebot.

Duckiebots have four LEDs, positioned similarly to the head and tail lights on a car.

Fig. 46 A duckiebot with the LEDs shining white and a diagram with arrows

indicating the front and rear LEDs.

You call also determine this by running:

docker -H ![DUCKIEBOT_NAME].local ps

and look at the output to find the Duckiebot interface container

and verify that it is running.

If that image is not running, you should update your Duckiebot

to restart all continers with

dts duckiebot update ![DUCKIEBOT_NAME]

Or to manually start just the duckiebot-interface, do:

docker -H ![DUCKIEBOT_NAME].local run --name

duckiebot-interface -v /data:/data --privileged

--network=host -dit --restart unless-stopped

duckietown/dt-duckiebot-interface:daffy-arm32v7

For more information about rostopic, see Starting no-

vnc images. You can see the images as your robot sees

them with rostopic echo

/![DUCKIEBOT_NAME]/camera_node/image/compressed.

Ctrl + c on the terminal once you’ve seen enough to

confirm the messages are being populated.

See also

Troubleshooting

SYMPTOM The camera is not detected from Duckiebot.

RESOLUTION (DB18, DB19 only) remove the battery pack and check the

camera cable for damage.

LEDs as actuators on a Duckiebot can be used for many purposes, including

Indicating what mode or mission the Duckiebot is running

Communicating state changes in the controller

Signaling upcoming turns or other navigation plans

Expressing character and personality

And simply lighting the driving environment

LED control

You can update the LEDs on your Duckiebot manually by bringing up the LED Widget using

the led_control command provided by the Duckietown Shell.

Open a terminal and run:

For all operation commands that use the Duckiebot’s name - replace

![DUCKIEBOT_NAME] with just the Duckiebot’s hostname, do not include .local part

that you used previously to access the dashboard.

After startup, the led_control command will open an interface window. Make sure the

window is active by selecting it, and press the buttons to update the color and intensity of

your Duckiebot’s LEDs.

Fig. 47 The LED control interface

Troubleshooting

dts duckiebot led_control ![DUCKIEBOT_NAME]

Attention

Troubleshooting

SYMPTOM When I press the buttons, the LEDs do not update. My

Dashboard > Robot > Components page shows a red alert

for the HUT.

RESOLUTION If you have a HUT v3.1 you will stumble on this problem the first

time you try to move your Duckiebot. Re-flash your HUT

following the procedure described in Debug - Re-flash

Microcontroller.

Troubleshooting

Operation - Software Tools

This section describes how to use available software tools for your Duckiebot including the

start_gui_tools interface, ROS tools, and the no-vnc Desktop interface.

Using start_gui_tools

If you are familiar with how ROS works and like using the command line interface, you can

run:

to obtain a terminal (container actually) that is connected to the Duckiebot ROS network. In

this terminal you can perform all ROS commands and have access to all ROS messages

streaming on your Duckiebot.

Note again that in these commands you input the Duckiebot hostname; do not

include .local part.

SYMPTOM I have reflashed the HUT but the led commands still do not

work. Additionally, the ToF sensor and front bumper are not

detected on the dashboard Components page. I may also be

having issues with the screen and joystick control.

RESOLUTION Disconnect the ToF sensor from the front bumper and use the

long cable that originally connected the front bumper to the

HUT to connect the ToF sensor directly to that same HUT port.

Then reboot. This bypasses a known multiplexer issue on

some bumpers that can cause other HUT misbehaviors.

Troubleshooting

SYMPTOM I checked the two troubleshooting issues above, and my

Duckiebot still doesn’t respond.

RESOLUTION Check that the duckiebot-interface container is running

Open the Portainer interface and check the running

containers. You should see one that has a name that contains

duckiebot-interface (exact container name will depend on

your robot version).

You can also determine this by running:

docker -H ![ROBOT_NAME].local ps

and look at the output to find the duckiebot-interface

container and verify that it is running.

If you don’t see the container, your base image is out of date -

update your Duckiebot with the command

dts duckiebot update ![ROBOT_NAME]

dts start_gui_tools ![DUCKIEBOT_NAME]

Attention

You can only start one instance of the start_gui_tools container. If you want

multiple terminal instances, it is recommended to use no-vnc.

Starting no-vnc images

If you would rather use an image that runs no-vnc to provide you with a Desktop

environment connected to the Duckiebot, type:

To use no-vnc, use your browser and navigate to:

You can treat this environment as a typical Ubuntu machine with ROS installed and

configured to talk with your Duckiebot. Click on the Terminal Desktop icon to open the

command line interface.

Using the ROS utilities

Once you’ve opened a terminal connected to the Duckiebot container using one of the two

methods above, you can use any of the commands below within that interface to check the

data streams in ROS.

List topics

You can see a list of published topics with the command:

See also: For more information about rostopic, see the official ROS wiki here.

You should see at least the following topics:

There might be other topics if you have already started other demos.

Show topics frequency

You can use rostopic hz to see the statistics about the publishing frequency:

On a Raspberry Pi 3, you should see a number close to 30 Hz:

Use Ctrl - C to stop rostopic.

Show topics data

You can view the messages in real time with the command rostopic echo:

You should see a large sequence of numbers being printed to your terminal.

Warning

dts start_gui_tools --vnc ![DUCKIEBOT_NAME]

http://localhost:8087/

rostopic list

/![DUCKIEBOT_NAME]/camera_node/camera_info
/![DUCKIEBOT_NAME]/camera_node/image/compressed
/rosout
/rosout_agg

rostopic hz /![DUCKIEBOT_NAME]/camera_node/image/compressed

average rate: 30.016
 min: 0.026s max: 0.045s std dev: 0.00190s window: 841

rostopic echo /![DUCKIEBOT_NAME]/camera_node/image/compressed

http://wiki.ros.org/rostopic

That’s the “image” - as seen by a machine.

rqt_image_view tool

To see what your Duckiebot sees, you can run

The command will open a window where you can view the image.

You will have to select the camera_node/image/compressed topic from the drop-down menu:

Fig. 48 The rqt image view window with dropdown menu - select the

camera_node/image/compressed topic.

Or if you are using the no-vnc interface, click on the RQT Image View application icon on the

desktop. You will see the same rqt_image_view interface start up

rqt_graph tool

If you want to explore the relationship between all the nodes, topics and tf, you can open up

a terminal and run:

This will open up a window that contains all the ROS topics being published, all the ROS

nodes running, and it is a very handy tool to understand the relationship between nodes.

ROS Troubleshooting

rqt_image_view

rqt_graph

Troubleshooting

SYMPTOM My ros commands are not working. I cannot use tab to auto

complete ROS commands.

RESOLUTION You can fix that by sourcing devel/setup.bash

source /code/catkin_ws/devel/setup.bash

Troubleshooting

Calibration - Camera

This section describes the intrinsic and extrinsic calibration procedures. You will need to
complete both the Camera and Wheels calibration processes before running any
Duckietown demos.

0) Required Materials

Calibration board

Fig. 49 Calibration checkerboard

If you do not have one already:

Download the Calibration checkerboard pdf

Print it with A3 Format
Fix the checkerboard to a rigid planar surface that you can move around

The squares must have side equal to 0.031 m = 3.1 cm. Please measure this,

as having the wrong size will make your Duckiebot crash.

In case your squares are not of the right size, make sure your printer settings

are on A3 format, no automatic scaling, 100% size.

If the pattern is not rigid the calibration will be useless. You can print on thick paper

or adhere to something rigid to achieve this.

SYMPTOM I cannot connect to ROS master.

RESOLUTION Go to Dashboard > Portainer to make sure the following

containers are running without errors:

ROS

car-interface

duckiebot-interface

If they are not running, refer to Docker troubleshooting for

instructions to resolve the issue.

What you will need You can see the camera image on the laptop.

What you will get Your camera intrinsics and extrinsics are calibrated and stored

on the Duckiebot. You will be able to access these calibrations

via the dashboard.

Note

Warning

file:///tmp/jb/_build/html/_images/a3-calibraion-pattern.png
https://github.com/duckietown/duckietown-mplan/blob/a025c99e218687685d80bd72a7f90996572a55c7/hardware/camera_calibration_pattern_A3.pdf

Optional material

This is not necessary, but you could also use a “lane” during the extrinsic calibration

procedure.

1) Intrinsic Calibration

Every camera is a little bit different, so we need to do a camera calibration procedure to

account for the small manufacturing discrepancies. This process will involve displaying a

predetermined pattern to the camera, and using it to solve for the camera parameters. For

more information, see our theory slides. And the procedure is basically a wrapper around the

ROS camera calibration tool.

Launch the intrinsic calibration application

You can launch the intrinsic calibration program with:

You should see an application launching, similar to the following figure, on the laptop.

Fig. 50 Intrinsic camera calibration tool

Do the calibration dance

Position the checkerboard in front of the camera until you see colored lines overlaying the

checkerboard. You will only see the colored lines if the entire checkerboard is within the field

of view of the camera.

Make sure to focus the image by rotating the mechanical focus ring on the lens of the

camera until you can clearly read the x and y labels.

Do not adjust the focus again after this process, as it will invalidate the calibration.

You should also see colored bars in the sidebar of the display window. These bars indicate

the current range of the checkerboard in the camera’s field of view:

dts duckiebot calibrate_intrinsics [your_duckiebot_hostname]

Troubleshooting

SYMPTOM Only a black window starts up

RESOLUTION Try resizing the window manually once using cursor, and you

should see the window content correctly.

Warning

https://github.com/duckietown/lectures/blob/master/1_ideal/25_computer_vision/cv_calibration.pdf
http://wiki.ros.org/camera_calibration
file:///tmp/jb/_build/html/_images/intrinsic_calibration_pre.png

X bar: the observed horizontal range (left - right)

Y bar: the observed vertical range (top - bottom)

Size bar: the observed range in the checkerboard size (forward - backward from the

camera direction)

Skew bar: the relative tilt between the checkerboard and the camera direction

Now move the checkerboard right/left, up/down, and tilt the checkerboard through various

angles of relative to the image plane. After each movement, make sure to pause long

enough for the checkerboard to become highlighted.

The indicator bars will fill as you collect enough data along each axis.

Once you have collected enough data, all four indicator bars will turn green. Then press the

“CALIBRATE” button in the sidebar.

If you are having a difficult time getting the indicator bars to turn green, try slowly

increasing the extremes at which you present the checkerboard to the camera,

focusing on one indicator bar at a time. (Move further left/right along the x axis only,

then the y axis, etc.)

Calibration may take a few moments. Note that the screen may dim. Don’t worry, the

calibration is working.

Fig. 51 Calibration step

Save the calibration results

If you are satisfied with the calibration, you can save the results by pressing the “COMMIT”

button in the side bar. (You never need to click the “SAVE” button.)

Tip

file:///tmp/jb/_build/html/_images/intrinsic_calibration_calibratestep.png

Fig. 52 Committing the calibration

This will automatically save the calibration results on your Duckiebot:

You can view or download the calibration file using the Dashboard running at

http://[your_duckiebot_hostname].local under File Manager in the sidebar on the left,

navigating to config/calibrations/camera_intrinsic/.

Confirm the calibration

Use the Dashboard to confirm that both calibration the intrinsic file has been saved.

Keeping your calibration valid

Do not change the focus during or after the calibration, otherwise your

calibration is no longer valid.

Do not use the lens cover anymore; removing the lens cover may change the

focus.

2) Extrinsic Camera Calibration

Setup

Arrange the Duckiebot and checkerboard according to Fig. 53. Note that the axis of the

wheels should be aligned with the y-axis.

/data/config/calibrations/camera_intrinsic/[your_duckiebot_hostname].yaml

Warning

file:///tmp/jb/_build/html/_images/intrinsic_calibration_commit.png
file:///tmp/jb/_build/html/_images/extrinsic_setup.jpg

Fig. 53 Extrinsic calibration setup

Fig. 54 shows a view of the calibration checkerboard from the Duckiebot. To ensure proper

calibration there should be no clutter in the background.

Fig. 54 Extrinsic calibration view

Launch the extrinsic calibration pipeline

Run:

First the output will instruct you place your robot on the calibration box and press Enter . If

all goes well the program will complete.

And this will automatically save the calibration results on your Duckiebot:

Similar to intrinsic calibration, you can also view or download the calibration file using the

Dashboard.

If you do not see a saved extrinsic calibration file, your Duckiebot was not able

detect the checkerboard and generate a valid calibration.

This could be due to

lack of evenly bright overhead lighting

A patterned background in the environment

A textured background wall or the shadowson the background wall

Try changing the calibration environment to match Fig. 54 before running the

calibrate_extrinsics command again.

Confirm the calibration

Use the Dashboard to confirm that both calibration the intrinsic and extrinsic files have been

saved.

Troubleshooting

dts duckiebot calibrate_extrinsics [your_duckiebot_hostname]

/data/config/calibrations/camera_extrinsic/[your_duckiebot_hostname].yaml

Attention

file:///tmp/jb/_build/html/_images/extrinsic_view.jpg

Calibration - Wheels

In the following documentation on this page, [hostname] refers to the hostname of

your duckiebot. For example:

with a Duckiebot named myrobot would be:

Also, replace other fields in a command with [] around with the corresponding

values.

Step 1: Make your robot move

Follow instructions in Operation - Make it Move to make your robot move with keyboard

control, and keep the terminal open.

Step 2: See how the robot really moves

There is a lot going on between pressing � (up arrow) on the keyboard and your Duckiebot

moving. To get a better view of what is going on, we need another terminal, but ran closer to

where the action is happening:

Duckietown uses ROS to move data around. To determine if the command above worked,

type:

You should see a list of ROS topics currently active on your Duckiebot. If you know ROS,

here you can use ROS commands at will. If you are not familiar with ROS, note that each of

these topics might carry messages, i.e., actual data. You can, e.g., “listen” to the data inside

each topic. For example:

Troubleshooting

SYMPTOM You see a long complicated error message that ends with

something about findChessBoardCorners failed.

RESOLUTION Your camera is not viewing the full checkerboard pattern. Most

likely part of the chess board pattern is occluded. Possibly you

didn’t assemble your Duckiebot correctly or you did not put it

on the calibration pattern properly.

What you will need You can make your robot move

What you will get You can calibrate the wheels of the Duckiebot such that it goes

in a straight line when commanded so. You can set the

maximum speed of the Duckiebot.

Note

ping [hostname].local

ping myrobot.local

dts start_gui_tools [hostname]

rostopic list

rostopic echo /[hostname]/camera_node/image/compressed

https://www.ros.org/

will show you incoming images as the Duckiebot sees them! You won’t be able to read bytes

or make sense of pixel values, though. Now, press Ctrl+C to stop reading the camera

stream.

Keep this terminal open. We will use it to perform the wheel calibration. All the

ros... commands below are executed in such a terminal.

Step 3: Perform the calibration

Calibrating the trim parameter

The trim parameter is set to 0.00 by default, under the assumption that both motors and

wheels are perfectly identical. You can change the value of the trim parameter by running the

command (in the start_gui_tools terminal from the previous step):

Use some tape to create a straight line on the floor (Fig. 55).

Fig. 55 Straight line useful for wheel calibration

Place your Duckiebot on one end of the tape. Make sure that the Duckiebot is perfectly

centered with respect to the line.

Command your Duckiebot to go straight for about 2 meters. Observe the Duckiebot from the

point where it started moving, and annotate on which side of the tape the Duckiebot drifted

(Fig. 56).

Fig. 56 Left/Right drift

Note

rosparam set /[hostname]/kinematics_node/trim [trim_value]

file:///tmp/jb/_build/html/_images/wheel_calibration_line.jpg
file:///tmp/jb/_build/html/_images/wheel_calibration_lr_drift.jpg

Measure the distance between the center of the tape and the center of the axle of the

Duckiebot after it traveled for about 2 meters (Fig. 57).

Make sure that the ruler is orthogonal to the tape.

Fig. 57 Measure the amount of drift after 2 meters run

If the Duckiebot drifted by less than 10 centimeters you can stop calibrating the trim

parameter. A drift of 10 centimeters in a 2 meters run is good enough for Duckietown. If the

Duckiebot drifted by more than 10 centimeters, continue with the next step.

If the Duckiebot drifted to the left side of the tape, decrease the value of r, by running, for

example:

If the Duckiebot drifted to the right side of the tape, increase the value of r, by running, for

example:

Repeat this process until the robot drives straight.

Calibrating the gain parameter

The gain parameter is set to 1.00 by default. You can change its value by running the

command:

Store the calibration

When you are all done, save the parameters by running:

The first time you save the parameters, this command will create the calibration file

Final check to make sure it’s stored

The calibration result is saved on your Duckiebot:

rosparam set /[hostname]/kinematics_node/trim -0.1

rosparam set /[hostname]/kinematics_node/trim 0.1

rosparam set /[hostname]/kinematics_node/gain [gain_value]

rosservice call /[hostname]/kinematics_node/save_calibration

/data/config/calibrations/kinematics/[hostname].yaml

file:///tmp/jb/_build/html/_images/wheel_calibration_measuring_drift.jpg

You can view or download the calibration file using the Dashboard running at

http://[hostname].local under File Manager in the sidebar on the left, navigating to

config/calibrations/kinematics/.

Additional information

There are additional parameters you can to play around with to get a better driving

experience. You can learn about odometry and odometry calibration here: video, theory,

activities and exercises.

Operation - Taking and verifying a log

Note that this section is outdated. We are working on updating it.

Requires: Operation - Make it Move

Requires: Calibration - Camera

Result: A verified log.

Preparation

Use note directives for basic highlighting.

This assumes that you have the folder /data/logs on the Duckiebot. If not, SSH

into your robot and execute:

It is recommended but not required that you log to your USB and not to your SD

card.

Record the log

Option: Minimal Logging on the Duckiebot

This will only log the imagery, camera_info, the control commands and a few other essential

things.

Option: Full Logging on the Duckiebot

To log everything that is being published, run the base container on the Duckiebot:

Stop logging

You can stop the recording process by stopping the container:

This section is outdated

Note

sudo mkdir /data/logs

Note

dts duckiebot demo --demo_name make_log_docker --duckiebot_name !
[DUCKIEBOT_NAME] --package_name duckietown_demos

dts duckiebot demo --demo_name make_log_full_docker --duckiebot_name !
[DUCKIEBOT_NAME] --package_name duckietown_demos

docker -H ![DUCKIEBOT_NAME].local stop demo_make_log_docker

https://vimeo.com/manage/videos/580764763
https://github.com/duckietown/mooc-exercises/tree/daffy/modcon

or demo_make_log_full_docker as the case may be. You can also do this through the

portainer interface.

Getting the log

Download through browser (Recommended)

Using the dashboard file tab, you can access files on your Duckiebot.

Go to /logs and you should see all your logs there. Simply click on the log you want to

transfer to your computer and it will download through your browser.

If for some reason you are having trouble accesing dashboard, you can directly specify the

webpage at http://![hostname].local:8082/logs/.

Using a USB drive

If you mounted a USB drive, you can unmount it and then remove the USB drive containing

the logs (recommended).

Using SCP

Otherwise you can copy the logs from your robot onto your laptop. Assuming they are on the

same network execute:

You can also download a specific log instead of all by replacing * with the filename.

Verify a log

This procedure requires rosbag to be installed. If you have not installed that

already, you can do so via:

Either copy the log to your laptop or from within your container do

Then:

verify that the “duration” of the log seems “reasonable” - it’s about as long as you ran

the log command for

verify that the “size” of the log seems “reasonable” - the log size should grow at about

220MB/min

verify in the output that your camera was publishing very close to 30.0Hz and verify

that your virtual joysick was publishing at a rate of around 26Hz.

An example of the output looks like this:

scp ![linux_username]@![hostname].local:/data/logs/* ![path-to-local-
folder]

Note

sudo apt-get install python3-rosbag

rosbag info ![FULL_PATH_TO_BAG] --freq

Introduction to Demos

This section lists all Duckietown demos. By demos we mean behaviors that are easily

executed, but not explained. Demos are useful for doing rather than learning, e.g., to quickly

test a behavior or showcase it in outreach circumstances.

Supported: these are polished demos that are actively maintained. You should be able

to follow the instructions and obtain the expected outcomes without errors.

Legacy: these demos are either under development or worked at some point in the

past. This content is not actively supported at this point in time but might work if special

attention is provided. We leave this non-polished content here to provide ideas on

projects or classes. We welcome contributions to these materials. If you would like to

see some of these demos moved to the “supported” section do not hesitate to let the

Duckietown team know on Slack.

Duckiebot Supported Demos

This section contains all the supported demos that can be run on one or more Duckiebots.

Lane following (LF)

Expected results

path: avlduck2_2020-08-05-01-54-18.bag
version: 2.0
duration: 12.7s
start: Aug 04 2020 21:54:18.73 (1596592458.73)
end: Aug 04 2020 21:54:31.42 (1596592471.42)
size: 69.9 MB
messages: 756
compression: none [77/77 chunks]
types: sensor_msgs/CameraInfo [c9a58c1b0b154e0e6da7578cb991d214]
 sensor_msgs/CompressedImage [8f7a12909da2c9d3332d540a0977563f]
topics: /avlduck2/camera_node/camera_info 374 msgs @ 29.9 Hz :
sensor_msgs/CameraInfo
 /avlduck2/camera_node/image/compressed 382 msgs @ 29.8 Hz :
sensor_msgs/CompressedImage

What you will need A computer with all steps and checkpoints completed

from the Software Setup section

An assembled and calibrated Duckiebot

What you will get A Duckiebot following lanes in your Duckietown!

What you will need An assembled and initialized Duckiebot;

Wheels calibration completed;

Camera calibration completed;

Joystick demo has been successfully launched;

A Duckietown city loop, as detailed in the appearance

specifications.

What you will get A Duckiebot driving autonomously in a Duckietown city

loop, without other vehicles, intersections, or obstacles.

https://staging-docs.duckietown.com/daffy/opmanual-duckietown/intro.html#book

A Duckiebot following the lane. from Duckietown on Vimeo.

Duckietown setup notes

Before getting started, make sure your Duckietown is ready to go:

The layout adheres to the The Duckietown Operation Manual;

The lighting is “good”: ideally white diffused light. This demo relies on images from the

camera and color detections, so avoid colored lights, reflections or other conditions that

might confuse or blind the onboard image sensor;

Duckiebot setup notes

Duckiebot in configuration DB21M, DB21J, or DB19.

The Duckiebot is powered on and connected to your network. You should be able to

successfully ping it from your base station;

You are able to see what the Duckiebot sees;

You are able to remote control your Duckiebot;

The camera is calibrated;

The wheels are calibrated.

Pre-flight checklist

Place the Duckiebot inside a lane (driving on the right-hand side of the road), making

sure it sees the lane lines;

Make sure no containers are running on the Duckiebot which use either the camera or

the joystick. We will run these ROS nodes in a new container.

Demo instructions

Start the lane following demo

To start the lane following (LF) demo:

It will take a minute for the demo to launch. You can check Portainer if all the containers

started successfully, and their logs if any issues arise.

Start driving autonomously

Run the keyboard controller (not necessary if you have a joystick set up instead) and press

the indicated key to initialize the driving behavior:

Outcome of the lane following demo.

TODO Fix video above, it does not use the proper vimeo directive.

dts duckiebot demo --demo_name lane_following --duckiebot_name !
[DUCKIEBOT_NAME] --package_name duckietown_demos

https://vimeo.com/334931570
https://vimeo.com/duckietown
https://vimeo.com/
https://staging-docs.duckietown.com/daffy/opmanual-duckietown/intro.html#book
https://vimeo.com/334931570

Table 2 Lane following demo start and stop commands

Controls Joystick Keyboard

Start Lane Following R1 a

Stop Lane Following L1 s

In case intersections and/or red lines are present in the city layout, they will be neglected.

The Duckiebot will drive across them like it is a normal lane.

You can regain control of the Duckiebot at any moment by stopping the demo using the

(virtual) joystick. The demo can be resumed by pressing the start button.

Visualize the detected line segments

This step is optional, and it provides a visualization of the line segments that the Duckiebot

detects, and is useful to debug eventual weird behaviors.

Make the lane_filter_node publish all the image topics. The start_gui_tools will

provide a shell that is connected to the ROS agent:

Run rqt_image_view and select the

/ROBOT_NAME/line_detector_node/debug/segments/compressed. You should see

something like this:

Line segment detections from Duckietown on Vimeo.

Troubleshooting

dts duckiebot keyboard_control ![DUCKIEBOT_NAME]

dts start_gui_tools ![DUCKIEBOT_NAME]

Outcome of the line detector node.

Troubleshooting

SYMPTOM The demo does not respond why pressing the start or stop

buttons

RESOLUTION Make sure the keyboard controller window is actively selected

Troubleshooting

SYMPTOM The Duckiebot does not move

RESOLUTION Check if you can manually drive the Duckiebot

https://vimeo.com/334931437
https://vimeo.com/duckietown
https://vimeo.com/
https://vimeo.com/334931437

Try re-launching dts duckiebot keyboard_control

![hostname]

Check if ROS messages are received on the robot on the

![hostname]/joy topic

Troubleshooting

SYMPTOM The Duckiebot does not stay in the lane, or overall exhibits a

bad driving behavior

RESOLUTION This can be due to a number of issues, e.g.: bad robot

calibrations, bad perception of lines due to inappropriate

lighting or non-respected appearance specifications of the

town, and/or bad tunining of the lane PID controller. The best

way to debug this is to:

Check rqt_image_view and look at image_with_lines.

Check if you see enough segments. If not enough segments

are visible, reset the Anti-Instagram filter.

Check if you see more segments and the color of the

segments are according to the color of the lines in Duckietown

Check your camera calibrations are good.

Troubleshooting

SYMPTOM The Duckiebot does not drive nicely through intersections

RESOLUTION For this demo, there should not be any intersections in the city

layout. Duckiebots will interpret intersections as “broken”

lanes, perceiving less salient features, potentially

compromising the state estimate hence causing the driving

troubles.

Troubleshooting

SYMPTOM The Duckiebot does not drive nicely through intersections

RESOLUTION For this demo, there should not be any intersections in the city

layout. Duckiebots will interpret intersections as “broken”

lanes, perceiving less salient features, potentially

compromising the state estimate hence causing the driving

troubles.

Troubleshooting

SYMPTOM The Duckiebot cuts white line while driving on inner curves

(advanced)

RESOLUTION This might be due to wrongly constructed lanes or bad

Duckiebot calibrations. Fortunately, feedback control should

take care of most of these problems.

While running the demo modify the PID controller gains from

the base station through:

rosparam set /!
[DUCKIEBOT_NAME]/lane_controller_node/k_d -45
rosparam set /!
[DUCKIEBOT_NAME]/lane_controller_node/k_theta -11

Duckiebot Legacy Demos

This section lists legacy Duckiebot demos.

General Demo Running Procedure

This page describes the basic procedure for running demos. Some demos have specific

requirements that must be adhered to, but the general process of running them through the

Duckietown shell is standardized.

Start demos

In the Duckietown dt-core, some ROS packages serve as building blocks for complex

demos. Each package contains node-specific launch files. The duckietown_demos package

contains demo launch files that combine multiple node launch files and adds the necessary

connections to stage demos that use dozens of nodes.

The launch procedure for both types is very similar. The generic command is:

This command will start the DEMO_NAME.launch launch file in the PACKAGE_NAME package

from the duckietown/![IMAGE]:daffy Docker image on the DUCKIEBOT_NAME Duckiebot.

Note: Currently daffy is the development branch and the dts commands work by default

with the master19 version. That is why you should always specify the image with the daffy

tag!

You can find the specific command for each demo in the corresponding part of the book.

Debug options

You can open a terminal in the container running the demo you want by appending the option

--debug to the command. An example is:

What you will need An internet connection; About 10 minutes; A computer with the

Duckietown Shell command installed and correctly setup;

What you will get Duckietown token correctly set up;

TODO AfD review

What you will need A Duckiebot in DB18 configuration that is initalized

Laptop configured, according to .

What you will get A behavior executed on your Duckiebot.

dts duckiebot demo --duckiebot_name ![DUCKIEBOT_NAME] --demo_name !
[DEMO_NAME] --package_name ![PACKAGE_NAME] --image duckietown/!
[IMAGE]:daffy

dts duckiebot demo --duckiebot_name ![DUCKIEBOT_NAME] --demo_name !
[DEMO_NAME] --package_name ![PACKAGE_NAME] --image duckietown/!
[IMAGE]:daffy --debug

https://github.com/duckietown/dt-core/tree/daffy/packages

This enables you to access to the ROS debug informations of the nodes that are launched.

This is the same output that you can see in the logs window of the particular container on

Portainer.

Lane following with obstacles

This demo is archived and not currently maintained. These instructions might be

obsolete.

This demo is build on the lane following demo by allowing multiple Duckiebots on the same

lane. Duckiebots will detect and maintain a distance from other vehicles. This demo is

sometimes referred to as “follow the leader”, when ran outside a city, or more simply as

“traffic management”.

Video of expected results {#demo-lane-following-with-obj-det-expected}

Video Link (Real) - Lane following with vehicles

Duckietown setup notes {#demo-lane-following-with-obj-det-duckietown-setup}

To run this demo, you can setup a quite complex Duckietown. The demo supports a variety

of road tiles, straight, complex turns, etc. It also supports dynamic and static vehicles and

can robustly avoid them. That makes it a level more difficult than the lane following demo.

You also need a wireless network set up to communicate with the robot or to ssh into it. The

demo is robust to varied lighting conditions but take care that the duckietown is not too dark

to hinder with the object detections.

Add one (or possibly more) Duckiebot in duckiebot configurations.

Care must be taken that duckiebot is rigid and there are no loose parts.

The camera must be upright so that it has a proper field of view.

Make sure the calibration(both intrinsic and extrinsic is done meticulously). The

performance is sensitive to it.

Make sure the battery is fixed in place and fully charged.

Pre-flight checklist {#demo-lane-following-with-obj-det-pre-flight}

Check that every Duckiebot has sufficient battery charge and that they are all properly

calibrated.

Turn the duckiebot on and wait for it to boot. To check if it’s ready, try to ssh into it.

Place the duckiebot in the right lane. The algorithm may not allow it to recover if it is

kept in the wrong ie, the left lane.

You can use portainer to see what all containers are running on the duckiebot. In this

demo, we will run a new container.

TODO JT: this looks cool but it is not LFV.

Warning

What you will need Several assembled and initialized Duckiebot;

Wheels calibration completed on all Duckiebots;

Camera calibration completed on all Duckiebots;

Joystick demo has been successfully launched;

A Duckietown city loop, as detailed in The Duckietown

Operation Manual.

What you will get One or more Duckiebot driving autonomously in lanes

while preventing crashes with other Duckiebots on the

same lane.

https://drive.google.com/open?id=18o9ejgp0wOWVv8RbLE_1Ax0TUQVMIi2S
https://staging-docs.duckietown.com/daffy/opmanual-duckietown/intro.html#book

Demo instructions {#demo-lane-following-with-obj-det-run}

Github Link to the Package for the Demo

Setup

Fork and clone udem-fall19-public:

If you are using fork, create an upstream:

Then pull from upstream:

Update submodules

To run in simulation

From udem-fall19-public directory run:

You can open the notebook just like before by copying the url that looks like:

After that, open terminal in the notebook and run below commands:

Run your launch file using below commands:

Visualize it in the simulation at http://localhost:6901/vnc.html in your browser, with

quackquack as the password. Run rqt_image_view in the terminal to visualize the image

topics.

To run on real bot

Go to package’s base directory and do

Pull the docker image for LFV on the duckiebot:

To run LFV on the duckiebot:

git clone https://github.com/charan223/udem-fall19-public.git

git remote add upstream https://github.com/duckietown-udem/udem-fall19-
public.git

git pull upstream master

git submodule init
git submodule update
git submodule foreach "(git checkout daffy; git pull)"

docker-compose build
docker-compose up

http://127.0.0.1:8888/?token={SOME_LONG_TOKEN}

jupyter-notebook $ catkin build --workspace catkin_ws
jupyter-notebook $ source catkin_ws/devel/setup.bash
jupyter-notebook $./launch_car_interface.sh

jupyter-notebook $ roslaunch purepursuit purepursuit_controller.launch

dts devel build --push

ssh ![DUCKIEBOT_NAME].local
docker pull charared/charan_ros_core:v1-arm32v7

https://github.com/charan223/charan_ros_core

You have to wait a while for everything to start working. While you wait, you can check in

Portainer if all the containers started successfully and in their logs for any possible issues.

Portainer can be accessed at below link:

You can place your duckiebot on the lane after you see in the logs that the duckiebot can see

the line segments. The duckiebot stops if it sees an obstacle(duckiebot) ahead and

continues following the lane after the obstacle is removed.

Stopping the container demo_purepursuit_controller in the portainer will stop the lane

following.

Implementation details

Description of the Demo and the Approach.

The task is to follow the lane and avoid dynamic vehicles. For Lane Following, we use the

Pure-Pursuit Controller. It seems to work better than the vanilla PID controller. For Lane

Following with Dynamic Vehicles (LFV), we consider two types of objects, static Duckies, and

dynamic Duckiebots. We follow a simple approach to avoid vehicles. First, we do Object

Detection. We tried two methods for this

Supervised Learning using Faster RCNN

HSV Thresholding based detection Upon Detection of a nearby obstacle, in this demo,

we just stop the Duckiebot till the obstacle makes way or is removed. This approach

can be expanded to incorporate more complex Rule-Based Maneuvering

Lane Following with the Pure-Pursuit Controller

Basics of Pure Pursuit Controller

We have used the purepursuit controller for the duckiebot to follow the lane. Follow point is

calculated ahead in the lane using the white and yellow segments detected.

Our implementation of the controller

We have used a trust segment approach, where we consider only that particular color

segment if they are more in number than others in calculating the follow point. If both color

segments are equal in number, we take an average of the centroids. Using this kind of

approach avoids a jittery path of the duckiebot.

Dynamic velocity and omega gain for the duckiebot

We have implemented a dynamic velocity and omega gain for the duckiebot using follow

point. If the y coordinate of the follow point is towards the farther right or left side, it implies

that there is a right or left turn there, and we slow down the duckiebot and increase the

omega gain to make the turn smoothly. We also vary velocity based on how farther the x

coordinate of the follow point is (i.e., increase velocity if the road is straight for a long

distance).

LFV: Object Detection using HSV Thresholding

The most basic way to detect objects which can work in both simulation and the real

environment is doing HSV thresholding and then doing opencv operations to get the

bounding box for the object. A brief description is as follows

We have performed HSV thresholding for both simulation and the real environment

separately

dts duckiebot demo --demo_name purepursuit_controller --duckiebot_name !
[DUCKIEBOT_NAME] --package_name purepursuit --image
charared/charan_ros_core:v1-arm32v7

https://![DUCKIEBOT_NAME].local:9000/#/containers

The pure_pursuit node on receiving an image processes it and determines if an

object is there.

HSV thresholding for reds and yellows is done to nicely detect the duckiebots and

duckies, to form a mask. We used OpenCV trackbars to find optimal HSV values.

Dilation is applied to form good blobs.

Then we find contours using cv2.findContour to aggregate the blobs. We use those

contours to get a nice bounding box around the detection

Now after the object is detected, we need to compute how far it is from our duckiebot and

whether the stopping criterion is satisfied. This is described next:

Ground Projections

We have written our custom point2ground function to transform the detected bounding box

coordinates(bottom two points of the rectangle) on the ground. We have initially normalized

point coordinates to original image coordinates and calculated the ground point coordinates

by performing dot product of homography matrix and the point coordinates. Now the

projected points tell us how far the detected object is from our robot.

Vehicle Avoidance

We use a very simple approach of just stopping on spotting an object which will collide with

the current trajectory. The stopping criterion is very simple. If the object is within some

deviation of our lane and within a threshold distance, then we stop, else we ignore. This

distance is obtained by using the ground projection node described before. This threshold is

fine-tuned for optimal performance.

Qualitative Results in the Simulation

The following is the results obtained from doing hsv thresholding in the simulation. We can

see that it does a good job of detecting all the objects.

Qualitatively we can also see the detection and the consequent stopping of the duckiebot

after the thresholding in simulation.

Full Video Link (Simulation) - Lane following with vehicles

https://drive.google.com/open?id=1-oaqhY2mspkT7VWq6Dqx_lCsA4yOZF5w

Qualitative Results in the Environment

Note that in the environment, the HSV thresholding values are different.

Full Video Link (Real) - Lane following with vehicles

Full Video Link (Real) - Lane following

LFV: Object Detection using Deep Learning

This approach is mainly targetted at leveraging the available Dataset and compute to use DL

to do Object Detection in Real Environment. We use logs from the real world, and Deep

Learning-based Faster RCNN with ResNet-50 and Feature Pyramid Network (FPN)

backbone.

Dataset

Dataset has images from logs of a Duckiebot in a Duckietown in a variety of lighting

conditions with objects like cones, signs, duckiebots, duckies etc.

There are annotations for all of these objects. We only make use of the annotations for

duckiebots and duckies since we assume only these in our environment.

Dataset as approximately 3k images

This dataset was provided by Julian Zilly, ETH Zurich. Contact him for a copy of the

dataset. jzilly@ethz.ch

TODO: Preprocessing script for this dataset can be found at,

Faster RCNN

Faster RCNN is a popular object detector model that first uses a Region Proposal

Network to give candidate regions based on the image statistics, and for each of those

regions, there is a classifier for the object type(also has background class) and a

regressor for the bounding boxes.

There are numerous tricks that are used to do efficient computation of the Feature

Maps for Proposals using RoI pooling trick.

The backbone used in this network is the 51 layered ResNet-51.

For more details you can refer to https://arxiv.org/abs/1506.01497

https://github.com/charan223/duckietown-report/raw/master/gifs/lfv_cut22.gif
https://drive.google.com/open?id=18o9ejgp0wOWVv8RbLE_1Ax0TUQVMIi2S
https://drive.google.com/open?id=18vinMYckb0UH0hNQebdYQNFNohcRcu9Z
mailto:jzilly@ethz.ch
https://arxiv.org/abs/1506.01497

On just using the Faster RCNN, we noticed that the smaller duckies and the far away

duckiebots were not detected properly.

So to do detection at different scales for more fine-grained detections, we use the

Feature Pyramid Network. For more details look at https://arxiv.org/abs/1612.03144

We used the implementation by Facebook AI research in their Detectron 2 framework.

Link to our implementation here: Colab Link

Training Details

We used an 80:20 Train, Val Split.

Approx 500 Duckiebot instances and 5k duckie instances were used.

For the backbone we use pre-trained weights from MS-COCO. So we need to only

fine-tune to our dataset. Which is time-efficient as well as allows us to train on our

small-dataset.

Obtained Results

Mean Average Precision(MAP) for duckies was 52.180 and for duckiebot was 52.011

Inference Time for the trained model is 0.05 sec/img

The detections are robust to different lighting conditions, as can be seen from the

results below.

We present some qualitative results which clearly show that this method performs really well

and is able to accurately detect all the duckiebots and all the ducks which are important.

https://arxiv.org/abs/1612.03144
https://colab.research.google.com/drive/1lUMuVuZzaiQDyc_2fBSUKJusULbzJgvj

The initial plan was to use this Deep Learning-based classifier in the real environment using

a GPU. But the process of setting up the Duckietown framework such that the inference is

done on the remote and the detections are communicated via the network is non-trivial, and

hence it was left for future work. We attempted to run our code on CPU, but the inference

times ranged between 5 to 10 seconds. So it wasn’t feasible to run it on the raspberry pi for

which the inference timing would have been even longer.

Performance

RUNNER UP during LFV Challenge at NeurIPS, Vancouver 2019

RUNNER UP during LF Challenge at UdeM, Montreal 2019

AI Driving Olympics Leaderboard

Challenge Position

aido3-LFV-real-validation 2

aido3-LFV-sim-testing 6

aido3-LFV-sim-validation 8

aido3-LF-real-validation 8

aido3-LF-sim-testing 10

aido3-LF-sim-validation 10

References

Mask R-CNN, Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick,

https://arxiv.org/abs/1703.06870

Feature Pyramid Networks for Object Detection, Tsung-Yi Lin, Piotr Dollár, Ross

Girshick, Kaiming He, Bharath Hariharan, Serge Belongie

https://github.com/facebookresearch/detectron2

Maintainer: Contact Charan Reddy (UdeM/ Mila), Soumye Singhal (UdeM/ Mila), via Slack

for further assistance.

Introduction to Learning Experiences

This section lists all Duckietown learning experiences (LXs):

Supported: these are polished LXs that are actively maintained. You should be able to

follow the instructions and obtain the expected outcomes.

Experimental: these LXs are either under development or worked at some point in the

past. This content is not actively supported at this point in time but might work with

some particular attention. We leave this non-polished content here to provide ideas on

projects or classes. We welcome contributions to these materials.

Supported Learning Experiences

This section lists the supported learning experiences available for Duckiebots.

Braitenberg

Collision Checker

Odometry and PID Control

Visual lane servoing

Object Detection

State Estimation

Planning

General Exercise Running Procedure

This page describes the exercises’ infrastructure. This infrastructure affords a seamless

method to build on existing baselines, test them in simulation, test them on robot hardware

either remotely or locally, and then evaluate and submit them as challenges with the AIDO

challenges infrastructure.

What you will need An internet connection; About 10 minutes; A computer with the

Duckietown Shell command installed and correctly setup;

Duckietown token correctly set up;

What you will get Knowledge!

TODO this must be updated to new LX workflow

https://arxiv.org/abs/1703.06870
https://github.com/facebookresearch/detectron2
https://github.com/duckietown/duckietown-lx/tree/mooc2022/braitenberg
https://github.com/duckietown/duckietown-lx/tree/mooc2022/collision-checker
https://github.com/duckietown/duckietown-lx/tree/mooc2022/modcon
https://github.com/duckietown/duckietown-lx/tree/mooc2022/visual-lane-servoing
https://github.com/duckietown/duckietown-lx/tree/mooc2022/object-detection
https://github.com/duckietown/duckietown-lx/tree/mooc2022/state-estimation
https://github.com/duckietown/duckietown-lx/tree/mooc2022/planning

Video Tutorial

Getting Started

Fork the mooc-exercices repository and clone it onto your computer.

Set up an upstream remote. From inside the directory you just cloned:

Now to pull anything new from the original repository you can do:

Enter the mooc-exercises folder that you just cloned do:

In here you will see a number of folders. Each folder corresponds to an exercise.

The Anatomy of an Exercise

Exercises should contain all of the following:

config.yaml

This contains information about the exercise. Example:

What you will need A Duckiebot that is initialized

Laptop configured, according to .

That you are able to submit a challenge according to .

What you will get

TODO add what we get in the needget section above

TODO
Add caption “Learn how to use the exercises infrastructure.” and

reference “fig:howto-dt-exercises” to the video above.

git remote add upstream git@github.com:duckietown/mooc-exercises.git

git pull upstream daffy

cd mooc-exercises

https://github.com/duckietown/mooc-exercises
https://vimeo.com/534777903

The agent_base indicates which image to use as a baseline to build from. The mappings are

listed here. Many of the existing exercises are build on the duckietown_baseline image

which contains all of the code in the dt-core repository.

Note: In the case that you are using the duckietown_baseline, any package/node that you

create in the exercise_ws directory will be run instead of the one in the dt-core repository if

the package name and node name match. This is achieved through workspace overlaying.

The ws_dir indicates the name of the subdirectory that contains the code that should be

mounted into the image.

The agent_run_cmd indicates the command that should be run when the container is run to

start things.

The notebooks contains the list of the notebooks that have to be converted to python scripts.

For each notebook must be specified the name of the notebook name, and the name of the

package where the generated script has to be copied package_name. Multiple notebooks can

be listed.

exercise_ws

As indicated above, the exercise_ws directory is where the code should go. For the case of

ROS packages, they should go inside a src directory inside exercise_ws.

assets

The assets folder contains two subfolders, setup and calibrations.

The setup subfolder contains all the configuration information (mostly in terms of

environment variables) that are needed to run the various docker images that we are

running (which depends on the configuration).

The calibrations folder contains robot calibrations with a similar directory structure as

is on the Duckiebot.

launchers

The launchers folder contains scripts that can be run by the agent. Specifically, the one that

is indicated in the config.yaml file will be run by default when the agent container is run or

when your exercise is submitted through the challenges infrastructure.

Note: You can specify different launchers to run depending on whether you are

testing/developing with the exercises infrastructure or submitting through the challenges
infrastructure.

notebooks

The notebooks folder contains pedagogical notebooks that can be run. Some parts of the

notebooks indeed are dedicated to tests, to check if the code is working properly before

starting the simulation or testing on the Duckiebot.

Before running the test cells make sure you run also the cells with the code. There are

different ways to run a cell:

Exercise configuration file

agent_base: "duckietown_baseline" # the agent base image to use
ws_dir: "exercise_ws" # directory that contains the code
agent_run_cmd: "run_all.sh" # the script in "launchers" to run the agent
with
notebooks:
 - notebook:
 package_name: "encoder_pose"
 name: "odometry_activity"
 - notebook:
 package_name: "lane_controller"
 name: "control_activity"

https://github.com/duckietown/duckietown-shell-commands/blob/daffy/utils/exercises_utils.py
https://github.com/duckietown/dt-core
https://github.com/duckietown/dt-core
http://wiki.ros.org/catkin/Tutorials/workspace_overlaying

1. click on the play button on the top left of the cell.

2. pressing crtl+enter.

The code in the notebooks can also be compiled and become accessible inside the code in

the exercise_ws directory.

In order to do so, from inside the exercise folder run:

This command convert the notebook into a python script and place it inside the package in

exercise_ws directory specified in the config.yaml file.

The same is when running the run command, with the difference that in this case the ROS

workspace is not built:

requirements.txt

The requirements.txt file contains any specific python requirements that you need for your

submission. Note that these are requirements need over and above the base image.

Dockerfile

The Dockerfile contains the recipe for making your submission. In the normal case, this is

relatively straightforward. We install the requirements, copy in the code and run a launcher.

The Exercises API

In the following we will describe the current commands that are supported within dts

exercises and how they are used.

Building your code

You can start by building your code with:

If you go inside the exercises_ws folder you will notice that there are more folders that

weren’t there before. These are build artifacts that persist from the building procedure

because of mounting.

Note: every time you run a dts exercises command you have to be inside an exercise

folder or you will see an error.

Testing your code

With dts exercises test you can test your agent:

1. in the simulated environment,

2. on your robot but with the agent code running on your laptop,

3. with all of the code running on your robot.

Running in Simulation

You can run your current solution in the gym simulator with:

Then you can look at what’s happening by looking through the “novnc” browser at

http://localhost:8087 .

dts exercises build

dts exercises run ![options]

dts exercises build

dts exercises test --sim

http://localhost:8087/

If you are running an exercise with a ROS-based baseline, you can use all of the existing

ROS tools from this browser desktop. For example,

open up the rqt_image_view, resize it, and choose

/agent/camera_node/image/compressed in the dropdown. You should see the image from

the robot in the simulator.

You might want to launch a virtual joystick by opening a terminal and doing:

If you are running the duckietown_baseline, by default the duckiebot is in joystick control

mode, so you can freely drive it around. You can also set it to LANE FOLLOWING mode by

pushing the a button when you have the virtual joystick active. If you do so you will see the

robot move forward slowly and never turn.

You might also explore the other outputs that you can look at in rqt_image_view.

Also useful are some debugging outputs that are published and visualized in RViz. You can

open RViz through the terminal in the novnc desktop by typing:

In the window that opens click “Add” the switch to the topic tab, then find the

segment_markers, and you should see the projected segments appear. Do the same for the

pose_markers.

Another tool that may be useful is rqt_plot which also can be opened through the terminal

in novnc. This opens a window where you can add “Topics” in the text box at the top left and

then you will see the data get plotted live.

All of this data can be viewed as data through the command line also. Take a look at all of

the rostopic command line utilities.

Testing Your agent on the Robot

If you are using a Linux laptop, you have two options, local (i.e., on your laptop) and remote

(i.e., on the Duckiebot). If you are Mac user stick to the remote option. To run “locally”

To run on the Duckiebot:

In both cases you should still be able to look at things through novnc by pointing your

browser to http://localhost:8087 . If you are running on Linux, you can load up the virtual

joystick and start lane following as above.

Interactive Mode

You may find it annoying to completely shut down all of the running images and restart them

to make a simple change to your code. To make things faster, you can use the

--interactive flag with dts exercises test.

In this case, when all of the containers other than the agent have started, you will be given a

command line inside the agent container (overriding the comand specified in config.yaml.

From here you can run your launcher from the command line manually.

dt-launcher-joystick

rviz

TODO add pictures.

dts exercises test --duckiebot_name ![ROBOT_NAME] --local

dts exercises test --duckiebot_name ![ROBOT_NAME]

http://localhost:8087/

Note: If you are running an exercise based on the duckeitown_baseline image, the first time

you will have to start the “interface” part of the agent. To do this run

You will see some output of some ros nodes starting. At the end, if you push ENTER you will

get your command line back. Then you can run the lane_following demo using your

lane_controller by running

You can do the normal thing of going to novnc and putting it into lane following mode or

driving around with the joystick or whatever.

If you would like to change your code and re-run, just edit your code on your laptop, and then

go to that terminal and do CTRL-C. You will see everything start to shut down. Then you can

simply rerun the agent and it will have the new code that you just modified since it’s mounted

into the agent container. So just do launchers/run_agent.sh again and it will start up again.

Note: You will see an output from the anti-instagram node saying it’s waiting for the first

image. Don’t worry, if you go to novnc and put the agent in lane following mode or drive with

the joystick, it will start to receive images and that output will go away

Note: There is a timeout on the simulator, so if you do CTRL-C and then spend a while

editing your code, it’s likely that the simulator will have shut down. So either leave it running

while you edit your code or just restart everything. You can get out of your terminal by typing

Experimental Learning Experiences

This section lists the experimental learning experiences available for Duckiebots.

Creating a Simulator ROS Wrapper

This exercise is likely out of date

How would we be able to exploit the powerhouse of dt-core in this simulator? By creating a

ROS interface to the simulator! This will allow us to run the same code that we run on the

duckiebot on the simulator.

In this exercise, you will create a ROS wrapper that maps wheel commands to actions and

observations to camera images on a ROS topic.

To do so, you will leverage the skills you have obtained in the previous exercises where you

used a ROS package template and created your own publisher and subscriber. This time, we

encourage you to again use the ROS package template and to create a node which can both

launchers/run_interface.sh.

launchers/run_agent.sh

exit

What you will need An internet connection; About 10 minutes; A computer with the

Duckietown Shell command installed and correctly setup;

What you will get Duckietown token correctly set up;

Note

What you will need The simulator installed accoring to these instructions

What you will get The ability to run a ROS agent using the simulator as if it was

a robot

https://staging-docs.duckietown.com/daffy/devmanual-software/intermediate/simulation/index.html#duckietown-simulation

publish and subscribe to topics.

This link contains some important files that will be required to properly test your ROS

wrapper. The docker-compose.yaml file spins up several containers at once through the

simple command docker-compose up from the directory where the file resides. If you take a

peek at the file you will see that these containers have familiar names. They are used to

provide functionality to your Duckiebot, and in this scenario they are still needed to allow you

to run demos in the simulator, to use the virtual joystick, etc. Inside docker-compose.yaml

there are some lines which you will have to modify. You have to make sure that the data

folder that you have downloaded from the link above is mounted on the containers so that

the simulator is able to use your calibration and other configuration files.

Since now we are running our code on a fake robot (which is really our local machine) we

need to modify a few things. In your /etc/hosts file, you will have to add the line

127.0.0.1 fakebot.local. At the end of the Dockerfile in your ROS project (based on

the Duckietown template) add the line: ENV VEHICLE_NAME fakebot.

Some apt packages you will need are: freeglut3-dev, xvfb

You will also need the duckietown-gym-daffy pip3 package

Finally, to ensure your publishers and subscribers parse the same ROS messages as the

rest of the Duckietown pipeline, you might want to make use of duckietown_msgs (which is

just a ROS package defined in dt-ros-commons).

Since your containers don’t have a display, you will want to run these lines of bash code

inside your container before running the wrapper.

Troubleshooting

Operation - Networking

The instructions here are ordered in terms of preference, the first being the most preferable

and best.

By default on boot your robot will look for a network with a “duckietown” SSID, unless you

changed it in the SD card flashing procedure. You can connect to your robot wirelessly by

connecting to that network.

dt-exec Xvfb :1 -screen 0 1024x768x24 -ac +extension GLX +render -noreset
export DISPLAY=:1

Troubleshooting

SYMPTOM Despite following the above instructions, when I run my

container I get an error like

pyglet.canvas.xlib.NoSuchDisplayException: Cannot

connect to "None"

RESOLUTION It could be that display :1 is in use or cannot be used by the

docker container. Try to change the display number to a higher

number (e.g. :33). Check out this post for more details.

What you will need A Duckiebot that is initialized according to .

Patience (channel your inner Yoda)

What you will get A Duckiebot that you can connect to and that is

connected to the internet.

https://drive.google.com/file/d/1BU17Gkl5wEjvxv0OtZ2bv5EbcyyH09ZN/view
https://github.com/duckietown/dt-ros-commons/tree/daffy/packages/duckietown_msgs
https://stackoverflow.com/c/duckietown/questions/103

This page describes how to get your robot connected to the wide-area network (internet).

Add WiFi Networks without reinitializing the SD card

To add networks at a later stage or modify existing settings, edit the file

wpa_supplicant.conf in the main partition of the SD card.

For robots based on Raspberry Pi, (e.g., DB17, DB18, DB19), this file is located at

/etc/wpa_supplicant/wpa_supplicant.conf in the root partition; For robots based on

Nvidia Jetson Nano, (e.g., DB21M), this file is located at /etc/wpa_supplicant.conf in the

APP partition;

New networks can be created by adding a new network={} paragraph, and then entering the

network information. An example network configuration is shown below:

Testing if your Duckiebot is Connected to the Internet

Some networks block pings from passing through, so a better way is to execute on your

duckiebot:

which will try to download the Google homepage. If it is successful, you should see an output

like:

Option 1: Connect your Duckiebot to the internet through a WiFi
router that you control

If you are working from your home, for example, you simply need to make the Duckiebot

connect to your home network. You may have input the proper SSID and password when

you initialized the SD card, in which case, your Duckiebot should be connected to the

internet already.

If you didn’t enter the right SSID and password for your network or you want to change you

need to connect to your robot somehow (e.g. with Ethernet) and then edit the file

/etc/wpa_supplicant/wpa_supplicant.conf as explained in the Duckiebot initialization

procedure.

This is the best option.

Option 2: Bridge the internet connection through your laptop with
Ethernet

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
country=CH

network={
 id_str="network_1"
 ssid="comnet23243"
 psk="MSNDJWKE32"
 key_mgmt=WPA-PSK
}

network={
 id_str="network_2"
 ssid="TPlink23432"
 psk="ksnbn4wn3"
 key_mgmt=WPA-PSK
}

duckiebot $ sudo curl google.com

 <HTML><HEAD><meta http-equiv="content-type"
content="text/html;charset=utf-8">
 <TITLE>301 Moved</TITLE></HEAD><BODY>
 <H1>301 Moved</H1>
 The document has moved
 here.
 </BODY></HTML>

This method assumes that you can connect your laptop to a network but it is one that you

don’t control or is not open. For example, on campus many networks are more protected,

e.g., with PEAP. In that case, it can be difficult to get your configurations right on the

Duckiebot. An alternative is bridge the connection between your laptop and your Duckiebot

whenever you need internet access on the robot.

Ubuntu

1. Connect your laptop to a wireless network.

2. Connect the Duckiebot to your laptop via an Ethernet cable.

3. Make a new Ethernet connection:

1. Network Settings… (or run the command nm-connection-editor)

2. Click “Add”

3. Type -> Ethernet

4. Connection Name: “Shared to Duckiebot”

5. Select “IPV4” tab

6. Select Method

7. Select “Shared to other computers”

8. Click apply.

Now, you should be able to SSH to your Duckiebot:

The next three commands should be executed on your Duckiebot through SSH

Check whether you can access the internet from your Duckiebot:

Now, try to pull a Docker image:

If the previous command does not work, you may need to change the system date. To do so,

run the following command:

Mac

Untested instructions here

duckiebot-network-push = ## Option 3: Push Docker Images from Laptop

Since we are primarily using the internet to pull Docker images, we can simply connect the

laptop and the Duckiebot then push Docker images from the laptop over SSH like so:

Then the image will be available on your Duckiebot.

If you can connect to your laptop (e.g. through a router) but do not have internet access then

you can proceed for now, but everytime you see a command starting with:

$ ssh ![hostname]

Note

$ sudo curl google.com

$ sudo docker pull duckietown/rpi-simple-server # This should complete
successfully

$ sudo date -s "2018-09-18 15:00:00" # Where this is the current date in
YYYY-MM-DD HH-mm-ss

$ docker save duckietown/![image-name] | ssh -C ![hostname] docker load

$ docker run ...

https://medium.com/@tzhenghao/how-to-ssh-into-your-raspberry-pi-with-a-mac-and-ethernet-cable-636a197d055

Note that you will need to pull onto your laptop and push to your Duckiebot in order to load

the latest version of the image.

Troubleshooting

I cannot ping the Duckiebot

Troubleshooting

SYMPTOM I cannot ping the Duckiebot (ping ![robot_name] does not

work).

RESOLUTION Check if your laptop and Duckiebot are connected to the same

network.

Additional debugging steps:

Step 1: Check that your Raspberry Pi is responsive by

observing the blinking LED on the Raspberry Pi.

Step 2: Connect your Duckiebot with the laptop using the

ethernet cable. Check if you are able to ping the Duckiebot.

This will provide you an hint if there is an issue with the robot

or network.

Step 3: Check that this file:

/etc/wpa_supplicant/wpa_supplicant.conf contains all the

wifi networks in the correct syntax that you want to connect.

Step 4: If it’s your private access point, then you can access

your router, typically connecting to 192.168.0.1, where you

can see all the devices connected. Make sure that both your

Duckiebot and your laptop are in the list.

Step 5: Check the file ~/.ssh/config has the correct name

hostname with hostname.local defined.

Troubleshooting

SYMPTOM When I run ssh ![robot_name].local I get the error ssh:

Could not resolve hostname ![robot_name].local.

RESOLUTION Make sure that your Duckiebot is ON. Connect it to a monitor,

a USB mouse and a keyboard.

Let’s try restarting the services for the mDNS (.local)

hostname resolution. Please run these commands on the

Duckiebot:

$ sudo systemctl restart avahi-daemon

$ sudo reboot

If the issue persists, please try following these steps to ensure

the service status is normal, and the configuration is correct.

(With the monitor, keyboard and mouse connected) On the

duckiebot run:

$ sudo service avahi-daemon status

You should get something like the following:

● avahi-daemon.service - Avahi mDNS/DNS-SD Stack

Loaded: loaded

(/lib/systemd/system/avahi-daemon.service; enabled;

vendor preset: enabled) Active: active (running)

since Sun 2017-10-22 00:07:53 CEST; 1 day 3h ago

Main PID: 699 (avahi-daemon) Status: "avahi-daemon

0.6.32-rc starting up." CGroup:

/system.slice/avahi-daemon.service ├─699

avahi-daemon: running [![robot_name_in_avahi].local

└─727 avahi-daemon: chroot helpe

Avahi is the module that in Ubuntu implements the mDNS

responder. The mDNS responder is responsible for advertising

the hostname of the Duckiebot on the network so that

everybody else within the same network can run the command

ping ![robot_name].local and reach your Duckiebot. Focus

on the line containing the hostname published by the

avahi-daemon on the network (i.e., the line that contains

![robot_name_in_avahi].local). If

![robot_name_in_avahi] matches the ![robot_name], go to

the next Resolution point. If ![robot_name_in_avahi] has the

form ![robot_name]-XX, where XX can be any number, modify

the file /etc/avahi/avahi-daemon.conf as shown below.

Identify the line

use-ipv6=yes

and change it to

use-ipv6=no

Identify the line

#publish-aaaa-on-ipv4=yes

and change it to

publish-aaaa-on-ipv4=no

Restart Avahi by running the command

$ sudo service avahi-daemon restart

Troubleshooting

SYMPTOM I can SSH to the Duckiebot but not without a password

RESOLUTION Check the file ~.ssh/config and make sure you add your ssh

key there, in case it doesn’t exists.

The init_sd_card procedure should generate a paragraph in

the above file in the following format:

Host duckiebot User duckie Hostname duckiebot.local

IdentityFile /home/user/.ssh/DT18_key_00

StrictHostKeyChecking no

Do:

$ ssh-keygen -f "/home/user/.ssh/known_hosts" -R

hostname.local

It will generate a key for you, if it doesn’t exists.

Debug - Re-flash Microcontroller

This procedure is needed only if your Duckiebot does not recognize the HUT

(Dashboard > Robot > Components). Although often unnecessary, it is safe to

perform on any HUT of version 2.0 and above.

When and why should I run this procedure?

This procedure flashes the microcontroller on the Duckietown HUT. This microcontroller is

responsible for translating the duty cycle commands from the onboard computer to actual

PWM signals that control the motors and the LEDs (because they are “addressable” LEDs) of

the Duckiebots.

A typical example of when is necessary to flash the microcontroller is when commands are

sent to the motors, e.g., through keyboard control, the motors signals on the

dashboard/mission control show that signals are correctly being sent, but the Duckiebot does

not move.

This procedure will not be useful to fix problems such as one motor working and not the

other, or LEDs showing unexpected colors when the motors work.

How to flash the microcontroller

SSH into your Duckiebot by running:

Troubleshooting

SYMPTOM Error message appears saying I cannot communicate with

docker. Also a warning \"DOCKER_HOST\" is set to

![hostname].local is present.

RESOLUTION Unset the DOCKER_HOST, running:

$ unset DOCKER_HOST

Troubleshooting

SYMPTOM You can ping the robot, ssh into it, start the demos, but the

commands from the virtual joystick do not seem to reach the

robot.

RESOLUTION A possible cause is that your computer’s firewall is blocking

the incoming traffic from the robot. Check the settings for the

firewall on your computer and make sure that any incoming

traffic from the IP address of the robot is allowed on all ports.

Keep in mind that if your robot’s IP address changes, you

might need to update the rule.

What you will need A Duckiebot of configuration DB18 or above.

A stable network connection to your Duckiebot.

What you will get A flashed microcontroller (not SD card) on the HUT

board, with the latest code version.

Warning

ssh duckie@![ROBOT_NAME].local

All of the following instructions are run on Duckiebot throught he SSH terminal

Install the packages needed to compile the microcontroller firmware:

Clone the firmware for the microcontroller using the following command:

Navigate inside the repository you cloned :

Warning: read the next passages carefully. Do not just copy and paste every line of code!

Copy the avrdude.conf file in the /etc folder of the robot. If you are running a Duckiebot

with an NVIDIA Jetson Nano board run:

else, if you have a Raspberry Pi based Duckiebot, use:

Then, test the avrdude and set the low-level configuration with:

A successful outcome looks like:

If you see the message make: warning: Clock skew detected. Your build may be

incomplete. or the process is not stopping, stop the process pressing Ctrl - C and run:

And then retry running the make fuses command.

To complete the procedure (in all cases, whether or not a warning was issued), remove all

temporary files by running:

Compile the firmware and upload it to the microcontroller:

The resulting output should be:

Note

sudo apt-get update
sudo apt-get install bison autoconf flex gcc-avr binutils-avr gdb-avr avr-
libc avrdude build-essential

git clone https://github.com/duckietown/fw-device-hut.git

cd fw-device-hut

sudo cp _avrdudeconfig_jetson_nano/avrdude.conf /etc/avrdude.conf

sudo cp _avrdudeconfig_raspberry_pi/avrdude.conf /etc/avrdude.conf

make fuses

avrdude: verifying …
avrdude: 1 bytes of efuse verified

avrdude: safemode: Fuses OK (E:FF, H:DF, L:E2)

avrdude done. Thank you.

find -exec touch \{\} \;

make clean

make

Remove the cloned repository to free up space:

and finally reboot the Duckiebot:

After reboot your Duckiebot should move normally and LEDs respond nominally. The

Dashboard / components page will show a green status for the HUT, too.

Debug - Duckiebot Update

Understand what is the difference between OTA update and
Release Update

The update method described in this page will allow you to receive an Over The Air (OTA)

update within the distribution you so choose (e.g., daffy), and it can improve your Duckiebot

performance. Note that this is different from using the init_sd_card tool: Using the

init_sd_card tool will only provide the latest release version, not the latest Duckiebot

software version.

```none 
..... 
 
sudo avrdude -p attiny861 -c linuxgpio -P  -q -U flash:w:main.hex 
 
avrdude: AVR device initialized and ready to accept instructions 
 
Reading | ################################################## | 100% 0.00s 
 
avrdude: Device signature = 0x1e930d (probably t861) 
avrdude: NOTE: "flash" memory has been specified, an erase cycle will be 
performed 
     To disable this feature, specify the -D option. 
avrdude: erasing chip 
avrdude: reading input file "main.hex" 
avrdude: input file main.hex auto detected as Intel Hex 
avrdude: writing flash (2220 bytes): 
 
Writing | ################################################## | 100% 0.75s 
 
avrdude: 2220 bytes of flash written 
avrdude: verifying flash memory against main.hex: 
avrdude: load data flash data from input file main.hex: 
avrdude: input file main.hex auto detected as Intel Hex 
avrdude: input file main.hex contains 2220 bytes 
avrdude: reading on-chip flash data: 
 
Reading | ################################################## | 100% 0.58s 
 
avrdude: verifying ... 
avrdude: 2220 bytes of flash verified 
 
avrdude: safemode: Fuses OK (E:FF, H:DF, L:E2) 
 
avrdude done.  Thank you. 
``` 

cd .. && rm -rf fw-device-hut

sudo reboot

What you will need A Duckiebot that has been initialized

A computer with an Ubuntu OS,

Duckietown Shell, Docker, etc., as configured in Setup -

Laptop.

Duckietown Token set up as in Setup - Accounts.

An internet connection to the Duckiebot, configured as in

Operation - Networking.

What you will get *An up-to-date Duckiebot!

Update Duckiebot container using dts command

If your Duckiebot has not been used for a while and a new image has been released, you

don’t necessarily need to re-flash the Duckiebot image as described in the initialization

procedure. Instead, you can use dts duckiebot update command to update your

Duckiebot.

You will see a prompt similar to this:

Fig. 58 Auto Update Duckiebot Container

Type in y for yes to continue updating. If you would like to abort, you can use Ctrl - C to

stop the update.

Note: This process is expected to take a while to complete.

Update Duckiebot container using Dashboard

To use the Dashboard for updating the Duckiebot container, first navigate to the Dashboard

software page. If you are not sure how to do that, refer to this page. If you have containers

that need to be updated, you will see the update button next to the container:

$ dts duckiebot update ![DUCKIEBOT_NAME]

The update will proceed upon click. If update is successful, you will see the image below:

Requesting a Support Connection

When and why should I run this procedure?

If your Duckiebot ends up in a unique state that is difficult to debug over Slack or other help

channels, a Duckietown support engineer may ask you to open a remote support connection.

This connection allows the Duckietown team to take logs from your Duckiebot that will help

track down any issues.

The connection will only remain open for as long as you leave the command running.

Because this process enables access to your Duckiebot, you should only follow

these steps when asked by a Duckietown support engineer.

It is also important to ensure that the connection is closed after taking the logs - you

will agree ahead of time on a time to open and complete the support process.

Step 1: Create a request

When instructed to do so, you can create a support request by running

Warning

file:///tmp/jb/_build/html/_images/dashboard-update1.png
file:///tmp/jb/_build/html/_images/dashboard-update2.png

This will result in the following message:

You will notice that the running process does not exit at this point. It is important to

leave it running in your terminal until instructed to close the support connection.

Step 2: Send the request address

Send the address corresponding to your_robot.support_address_will_appear_here in

fig:support-code to Duckietown support. They will use this address to retrieve the logs

from your Duckiebot.

Step 3: Close the support connection

Once the debugging process is finished, the Duckietown support engineer will let you know

that you can close the connection.

Simply exit the command using Ctrl^C in your terminal.

Reset Dashboard

Sometimes the Dashboard’s database can get corrupted due to an improper shutdown of the

robot. This can have different kinds of effects on the usability of the dashboard, going from

flat out 404 errors, to bad gateway, to permission errors. In many cases, a hard-reset of

the database is enough for the problem to get fixed.

Reset database

Resetting the database will delete all custom data from the dashboard and you will

be asked to perform the first setup again.

The dashboard stores all its databases inside a Docker volume. Use the following

commands to force a reset by removing such volume,

The last step will remake the dashboard container and regenerate a database in the process.

Version Control with Git

Background reading

See: Github tutorial

See: Github workflow

dts duckiebot support request <your_robot>

Attention

Warning

docker -H ROBOT_NAME.local stop dashboard
docker -H ROBOT_NAME.local rm dashboard
docker -H ROBOT_NAME.local volume rm duckietown_compose-data
dts duckiebot update ROBOT_NAME

https://guides.github.com/activities/hello-world/
https://guides.github.com/introduction/Llow/

Installation

The basic Git program is installed using

Additional utilities for git are installed using:

This include the git-ignore utility, which comes in handy when you have files that you don’t

actually want to push to the remote branch (such as temporary files).

##Setting up global configurations for Git

Use these commands to tell Git who you are:

Git tips

Fork a repository

To fork (creating a copy of a repository, that does not belong to you), you simply have to go

to the repository’s webpage dashboard and click fork on the upper right corner.

Clone a repository

To clone a repository, copy either the HTTPS or SSH link from the repository’s webpage. The

following command will download the git repository in a new directory on the local computer

(starting from the current working directory).

If you have SSH setup properly, you can directly download it. If you are using the HTTPS

then github will ask for your credentials.

Move between branches

You can move to a different branch using the command,

Create a new branch

After you successfully cloned a repository, you may want to work on your own branch. Move

to the branch you want to start from and run the following command,

To see which branch you are working on you can either use both of these commands

The latter provides more information on which files you might have changed, which are

staged for a new commit or that you are up-to-date (everything is ok).

Commit and Push changes

After you edited some files, you want to push your changes from the local to the remote

location. Check the changes that need to be committed/pushed with the command,

sudo apt install git

sudo apt install git-extras

git config --global user.email "![email]"
git config --global user.name "![full name]"

git clone git@github.com:USERNAME/REPOSITORY

git checkout ![destination-branch]

git checkout -b ![branch-name]

git branch
git status

Use the following command to mark a ![file] as ready to be committed,

Once you marked all the files you want to include in the next commit, complete the commit

with a commit message to let collaborators know what you have changed,

If everything went well, you are now ready to push your changes to your remote with,

Fetch new branches

If new branches have been pushed recently to the repository and you don’t have them you

can invoke a

to see all new branches and checkout to those.

Delete branches

To delete a local branch execute (you cannot be on the branch that you are going to delete!):

To delete a remote branch you need to push the delete command:

Open a pull request

If you are working on another branch than the master or if you forked a repository and want

to propose changes you made into the master, you can open a so-called pull-request. In

order to do so, press the corresponding tab in the dashboard of a repository and then press

the green button New pull request. You will be asked which branch from which fork you

want to merge.

Keep your password stored locally

If you are setting up Github on your own personal computer, and you use two factor

authentication, it might be time consuming to configure that every time you need to provide

git credentials. Instead, you can have the computer to remember your password. To do that,

you can:

Please note you should only do that if this is your personal computer!

Submitting issues

If you are experiencing issues with any code or content of a repository (such as this

operating manual you are reading right now), you can submit issues. For doing so go to the

dashboard of the corresponding repository and press the Issues tab where you can open a

new request.

For example you encounter a bug or a mistake in this operating manual, please visit this

repository to open a new issue.

git status

git add ![file]

git commit -m "![commit-message]"

git push origin ![branch-name]

git fetch --all

git branch -d ![branch-name]

git push origin --delete ![branch-name]

git config --global credential.helper store

https://github.com/duckietown/docs-opmanual_duckiebot/issues

Git troubleshooting

Problem 1: https instead of ssh:

The symptom is:

Diagnosis: the remote is not correct.

If you do git remote you get entries with https::

Expectation:

Solution:

Problem 2: git push complains about upstream

The symptom is:

Solution:

Docker Basics

What is Docker?

Docker is used to perform operating-system-level virtualization, something often referred to

as “containerization”. While Docker is not the only software that does this, it is by far the

most popular one.

Containerization is a process that allows partitioning the hardware and the kernel of an

operating systems in such a way that different containers can co-exist on the same system

independently from one-another. Programs running in such a container have access only to

the resources they are allow to and are completely independent of libraries and

configurations of the other containers and the host machine. Because of this feature Docker

containers are extremely portable.

Containers are often compared to virtual machines (VMs). The main difference is that VMs

require a host operating system (OS) with a hypervisor and a number of guest OS, each with

their own libraries and application code. This can result in a significant overhead. Imagine

running a simple Ubuntu server in a VM on Ubuntu: you will have most of the kernel libraries

and binaries twice and a lot of the processes will be duplicated on the host and on the guest.

TODO Use the trouble directive instead

$ git push
Username for 'https://github.com':

$ git remote -v
origin https://github.com/duckietown/Software.git (fetch)
origin https://github.com/duckietown/Software.git (push)

$ git remote -v
origin git@github.com:duckietown/Software.git (fetch)
origin git@github.com:duckietown/Software.git (push)

git remote remove origin
git remote add origin git@github.com:duckietown/Software.git

fatal: The current branch ![branch name] has no upstream branch.

$ git push --set-upstream origin ![branch name]

Containerization, on the other hand, leverages the existing kernel and OS and adds only the

additional binaries, libraries and code necessary to run a given application. See the

illustration bellow.

Using containers Using VMs

Because containers don’t need a separate OS to run they are much more lightweight than

VMs. This makes them perfect to use in cases where one needs to deploy a lot of

independent services on the same hardware or to deploy on not-especially powerful

platforms, such as Raspberry Pi - the platform Duckiebots use.

Containers allow for reuse of resources and code, but are also very easy to work with in the

context of version control. If one uses a VM, they would need to get into the VM and update

all the code they are using there. With a Docker container, the same process is as easy as

pulling the container image again.

How does Docker work?

You can think that Docker containers are build from Docker images which in turn are build up

of Docker layers. So what are these?

Docker images are build-time constructs while Docker containers are run-time constructs.

That means that a Docker image is static, like a .zip or .iso file. A container is like a

running VM instance: it starts from a static image but as you use it, files and configurations

might change.

Docker images are build up from layers. The initial layer is the base layer, typically an official

stripped-down version of an OS. For example, a lot of the Docker images we run on the

Duckiebots have rpi-ros-kinetic-base as a base.

Each layer on top of the base layer constitutes a change to the layers below. The Docker

internal mechanisms translate this sequence of changes to a file system that the container

can then use. If one makes a small change to a file, then typically only a single layer will be

changed and when Docker attempts to pull the new version, it will need to download and

store only the changed layer, saving space, time and bandwidth.

In the Docker world images get organized by their repository name, image name and tags.

As with Git and GitHub, Docker images are stored in image registers. The most popular

Docker register is called DockerHub and it is what we use in Duckietown.

An image stored on DockerHub has a name of the form:

All Duckietown-related images are in the duckietown repository. The images themselves can

be very different for various applications.

Sometimes a certain image might need to have several different versions. These can be

designated with tags. For example, the daffy tag means that this is the image to be used

with the daffy version of Duckietown.

duckietown/![IMAGE_NAME]:![VERSION-NAME]-![ARCH-NAME]

It is not necessary to specify a tag. If you don’t, Docker assumes you are interested in the

image with latest tag, should such an image exist.

Working with images

If you want to get a new image from a Docker register (e.g. DockerHub) on your local

machine then you have to pull it. For example, you can get an Ubuntu 18.04 image by

running the following command:

You will now be able to see the new image you pulled if you run:

If you don’t need it, or if you’re running down on storage space, you can remove an image by

simply running:

You can also remove images by their IMAGE ID as printed by the list command.

Sometimes you might have a lot of images you are not using. You can easily remove them all

with:

However, be careful not to delete something you might actually need. Keep in mind that you

can’t remove images that a container is using. To do that, you will have to stop the container,

remove it, and then you can remove the related images.

If you want to look into the heart and soul of your images, you can use the commands

docker image history and docker image inspect to get a detailed view.

Working with containers

Containers are the run-time equivalent of images. When you want to start a container,

Docker picks up the image you specify, creates a file system from its layers, attaches all

devices and directories you want, “boots” it up, sets up the environment up and starts a pre-

determined process in this container. All that magic happens with you running a single

command: docker run. You don’t even need to have pulled the image beforehand, if Docker

can’t find it locally, it will look for it on DockerHub.

Here’s a simple example:

This will take the ubuntu image with latest tag and will start a container from it.

The above won’t do much. In fact, the container will immediately exit as it has nothing to

execute. When the main process of a container exits, the container exits as well. By default

this ubuntu image runs bash and as you don’t pass any commands to it, it exits immediately.

This is no fun, though.

Let’s try to keep this container alive for some time by using the -it switch. This tells Docker

to create an interactive session.

Now you should see something like:

docker pull library/ubuntu:18.04

docker image list

docker image rm ubuntu:18.04

docker image prune

docker run ubuntu

docker run -it ubuntu

Keep in mind that the part after @ will be different—that is your container ID.

In this manual, we will use the following icon to show that the command should be run in the

container:

You are now in your new ubuntu container! Try to play around, you can try to use some basic

bash commands like ls, cd, cat to make sure that you are not in your host machine.

Note: If you are sure about the difference between the host and the container, you

might want to see what happens when you do rm -rf / IN THE CONTAINER.

You will destroy the OS inside the container—but you can just exit and start another one. If

instead you have confused host and container, at this point you probably need to re-install

from scratch.

You can check which containers you are running using the docker ps command —

analogous to the ps command. Open a new terminal window (don’t close the other one yet)

and type:

An alternative syntax is

These commands list all running containers.

Now you can go back to your ubuntu container and type exit. This will bring you back to you

host shell and will stop the container. If you again run the docker ps command you will see

nothing running. So does this mean that this container and all changes you might have made

in it are gone? Not at all, docker ps and docker container list only list the currently
running containers.

You can see all containers, including the stopped ones with:

Here -a stands for all. You will see you have two ubuntu containers here. There are two

containers because every time you use docker run, a new container is created. Note that

their names seem strangely random. We could have added custom, more descriptive names

—more on this later.

We don’t really need these containers, so let’s get rid of them:

You need to put your container names after rm. Using the containr IDs instead is also

possible. Note that if the container you are trying to remove is still running you will have to

first stop it.

You might need to do some other operations with containers. For example, sometimes you

want to start or stop an existing container. You can simply do that with:

root@73335ebd3355:/#

command to be run in the container

docker ps

docker container list

docker container list -a

docker container rm ![container name 1] ![container name 2]

docker container start ![container name]
docker container stop ![container name]
docker container restart ![container name]

Imagine you are running a container in the background. The main process is running but you

have no shell attached. How can you interact with the container? You can open a terminal in

the container with:

Running images

There are many command line arguments that can be passed to the docker run command.

Table of Docker Command Flags shows a summary of the options we use most often in

Duckietown. Below, we give some examples

docker attach ![container name]

Table 3 Table of Docker Command Flags

Short Command Full Command Explanation

-i –interactive

Keep STDIN open even if

not attached, typically used

together with -t.

-t –tty

Allocate a pseudo-TTY, gives

you terminal access to the

container, typically used

together with -i.

-d –detach
Run container in background

and print container ID.

–name

Sets a name for the

container. If you don’t specify

one, a random name will be

generated.

-v –volume

Bind mount a volume,

exposes a folder on your

host as a folder in your

container. Be very careful

when using this.

-p –publish

Publish a container’s port(s)

to the host, necessary when

you need a port to

communicate with a program

in your container.

-d –device

Similar to -v but for devices.

This grants the container

access to a device you

specify. Be very careful when

using this.

–priviledged

Give extended privileges to

this container. That includes

access to all devices. Be

extremely careful when

using this.

–rm
Automatically remove the

container when it exits.

-H –hostname

Specifies remote host name,

for example when you want

to execute the command on

your Duckiebot, not on your

computer.

–help
Prints information about

these and other options.

Most of this is hidden from the Duckietown user when running commands because

it is contained within the Duckietown Shell commands.

Examples

Set the container name to joystick:

Note

--name joystick

Mount the host’s path /home/myuser/data to /data inside the container:

Publish port 8080 in the container as 8082 on the host:

Allow the container to use the device /dev/mmcblk0:

Run a container on the Duckiebot:

Other useful commands

Pruning images

Sometimes your docker system will be clogged with images, containers and what not. You

can use docker system prune to clean it up.

Keep in mind that this command will delete all containers that are not currently running and

all images not used by running containers. So be extremely careful when using it.

Portainer

Often, for simple operations and basic commands, one can use Portainer.

Portainer is itself a Docker container that allows you to control the Docker daemon through

your web browser. You can install it by running:

Note that Portainer comes pre-installed on your Duckiebot, so you don’t need to run the

above command to access the images and containers on your robot. You still might want to

set it up for your laptop.

Further resources

There is much more that you can learn to do with Docker.

Here are some resources you can look up:

Duckietown Introduction to Docker for Robotics and Machine Learning;

Docker’s official Get Started tutorial;

Docker Curriculum;

Docker Deep Dive, by Nigel Poulton.

Docker Troubleshooting

-v /home/myuser/data:/data

-p 8082:8080

-d /dev/mmcblk0

-H duckiebot.local

docker system prune

docker volume create portainer_data
docker run -d -p 9000:9000 --name portainer --restart always -v
/var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data
portainer/portainer

Troubleshooting

SYMPTOM I got a permission denied error while trying to connect to the

Docker daemon socket

RESOLUTION If this is on your laptop, that means when you set up your

environment you did not grant your user account right to do

https://docs.docker.com/get-started/
https://docker-curriculum.com/

Secure shell (SSH)

Requires: Time: 5 minutes.

Results: You will know about some useful shortcuts.

Now, we will tell you about some shortcuts that you can use to save some time.

environment you did not grant your user account right to do

certain things. You can fix this by running:

sudo adduser ``whoami`` docker

Log out and in again - it should now be fixed.

Troubleshooting

SYMPTOM The container I am trying to run does not start - docker:

Error response from daemon: Conflict. The container

name "/![container_name]" is already in use by

container "![container_hash]". You have to remove

(or rename) that container to be able to reuse that

name.

RESOLUTION Stop the container (docker stop ![container_name]) if

running and then remove (docker rm ![container_name])

the container with the

Troubleshooting

SYMPTOM Docker exits with the message tls: oversized record

received

RESOLUTION If Docker exits with the above error when running remote

commands, the most likely reason is different versions of

Docker on your computer and Duckiebot. You can check that

by running docker version on both devices. If that is indeed

the case, you need to upgrade the Docker binaries on your

computer. To do that, follow the official instructions here.

Troubleshooting

SYMPTOM I can’t run a container because I get exec user process

caused "exec format error"

RESOLUTION Despite not being very descriptive, an error like this typically

means that there is a mismatch between the container’s

processor architecture and the one on your computer. Different

processor architectures have different instruction sets and

hence binaries compiled for one are generally not executable

on another. Raspberry Pis use ARM processors, while most of

the laptops use x86 architecture which makes them

incompatible. Still, there’s hope. Most of the Duckietown

Raspberry Pi containers have a piece of magic inside called

Qemu which allows emulation of an ARM processor on a x86

machine. You can activate this emulator if you change the

default entrypoint of the container by adding

--entrypoint=qemu3-arm-static to options when running it.

https://docs.docker.com/install/linux/docker-ce/ubuntu/

Note: in the future you will have to debug problems, and these problems might be harder to

understand if you rely blindly on the shortcuts.

SSH aliases

Instead of using

You can set up SSH so that you can use:

During your init_sd_card process described later in the book, the command will automatically

setup ~/.ssh/config . If you are having trouble using it, you can follow the instructions

below.

To manually create an SSH alias, create a host section in ~/.ssh/config on your laptop with

the following contents:

Note that this does not let you do

You haven’t created another hostname, just an alias for SSH.

However, you can use the alias with all the tools that rely on SSH, including rsync and scp.

Handling circuits and batteries

Duckiebots support several power bank models, although not all power sources will work.

Here, we list properties of the supported models.

The Duckiebattery (DB-C-DBatt)

This battery is the standard battery for the Duckiebots since 2021. For example, models

DB21M, DB21J, and DBR4 use this battery.

The Duckiebattery is special because it is a programmable, smart battery, designed and

manufactured specifically for Duckiebots. Using this battery will allow your Duckiebot to

monitor the state of charge and other diagnostics, and shutdown via software. Moreover, it

enables advanced features such as auto-charging in Autolabs, because it will guarantee

power to the onboard computer when being plugged in or out of charge.

ssh duckie@![ROBOT].local

ssh ![ROBOT]

Host ![ROBOT]
 User duckie
 Hostname ![ROBOT].local

ping ![ROBOT]

What you will need Nothing

What you will get Preliminary knowledge on circuits and power source

properties useful in Duckietown

Fig. 59 The Duckiebattery.

Technical specification

Capacity: 10Ah at 3.7V

Charging: Micro USB 5V at up to 2A

Output 2 x USB type A 5V at up to 4A (combined), max 2.5A on a single port

Charge time: 0-100% takes about 5h and 0-90% about 4h with a 2A power supply

Weight: 189g (fully charged)

Lithium-ion batteries like the Duckiebattery are potentially dangerous and must be

handled with care.

Here are some things to do and not to do.

Keep reading the following safety precautions: do not skip this section.

Handling: things to do

Dispose of the battery pack immediately if it has been subject to moisture

and/or the case is eminently damaged.

In case of fire use a CO2 extinguisher.

Store preferably in cool, dry and ventilated area subject to moderate

temperature change.

Storage at high temperatures (>50 C) should be avoided.

Handling: things not to do

Do not connect a charge voltage greater than 5V.

Do not connect an external voltage source to the USB output ports.

The battery must not be opened, destroyed or incinerated, since it may leak

or rupture, releasing in the environment it’s hermetically sealed chemicals.

Do not short circuit terminals.

Do not crush or puncture the battery, or immerse it in liquid.

Do not place the battery near heating equipment, nor expose to direct sunlight

for long periods.

Caution

Warning

Things to do

Things not to do

file:///tmp/jb/_build/html/_images/DB-C-DBatt_real2.jpg

LED description

The battery has five LEDs on the top, used for indicating state of charge.

Fig. 60 LEDs indicate the state of charge of the Duckiebattery.

To see the battery state of charge, click once on the button. The state of charge

LEDs will stay on for 10 seconds and the battery set in idle state, ” waking up” the

battery.

Fig. 61 Wake up the battery by pressing the button once.

Charge the battery

After setting the battery in idle mode, charge it by connecting a 5V 2A power adapter. Note

that using a higher amperage charger will not damage the unit. The LEDs will be flashing at

1 Hz, showing the battery is receiving charge.

Fig. 62 Charging the Duckiebattery.

When the battery’s state of charge is particularly depleted (e.g., as soon as you receive the

battery), the LEDs might be unresponsive for up to 30 minutes while receiving charge.

Battery protection mode

The battery is equipped with safety features to prevent damage to others and itself. In

particular, it has dedicated hardware to protect its cell from low voltage discharge.

Note

file:///tmp/jb/_build/html/_images/DB-C-DBatt_1.png
file:///tmp/jb/_build/html/_images/DB-C-DBatt_2.png
file:///tmp/jb/_build/html/_images/DB-C-DBatt_3.png

When a certain low cell voltage level is detected, the battery micro-controller, together with

all other active components will be turned off, except the charger. When a Duckiebattery

enters protection mode, it will look unresponsive.

Nonetheless, the charger will “trickle” charge the battery cell until it has reached a safe

voltage level, exiting the battery protection mode.

The battery protection mode can last up to 30 minutes, during which the battery might not

indicate a state of charge nor that it is actually being charged. This does not mean the

battery is dead, just “hibernating”.

USB outputs

The battery have two separate 5V 2A USB type A output, namely USB OUT-1 (a.k.a. the

muscles) and USB OUT-2 (a.k.a. the brains).

Fig. 63 Duckiebattery outputs behave differently.

USB OUT-1: Connect this output to a non-sensitive power load, i.e., motor or LEDs.

This output will experience short power drops when plugging and unplugging the

charger cable.

USB OUT-2: this is an 5V 2A USB output, uninterrupted by the charging process or the

status of USB OUT-1. This port should be connected to the computing unit (i.e.,

NVIDIA Jetson Nano or Raspberry Pi) to allow the unit not to restart when plugging or

unplugging the charger of the battery.

Troubleshooting

The most common fault is not related to the battery pack itself but the connection between

the pack and the charger and/or the load.

Always make sure the USB cable is not damaged and of good quality. Do not use a

cable longer then 30cm. A faulty cable can cause excessive voltage drops between

the battery pack and load, leading to low voltage issues.

Note

Troubleshooting

SYMPTOM My battery does not charge.

RESOLUTION There can be several reasons why a charge is not being

accepted. Below are the most common issue.

The input voltage is too low or too high. Make sure you are

apply 5V via the micro USB connector

The battery is in battery protection mode and does not look

like it’s charging, but it is. Come back in >30 minutes and

press the button once to enter idle mode.

file:///tmp/jb/_build/html/_images/duckiebattery-outputs.png

The Duckie-power-bank

The Duckie-power-bank (or Duckiebattery version 1) is the standard power source for

Duckiebots in DB18 and DB19 configurations. Duckie-power-banks are easily recognizable:

Fig. 64 The Duckie Power Bank is the first version of the Duckiebattery, used

in DB18 and DB19 Duckiebots.

Overview

The battery is in a fault state. This can be caused by over

temperature on the battery cell and/or its internal PCB. Leave

the battery to cool down for 1h then attempt to charge it again.

Troubleshooting

SYMPTOM One or both USB output are not working

RESOLUTION There can be several reasons why the USB output is not

working. Below are the most common issue.

The battery is not on idle mode. Press the battery button

once.

The battery is in battery protection mode. Remove all loads,

put in charge and wait >30mins to have the battery exit

protection mode. Then enter wake up the battery by pressing

the button once.

The USB output is in over current/temperature mode.

Disconnect all loads, enter idle mode and let the battery rest

for 30 minutes.

A external voltage was applied to the USB (output) port(s).

This is a big no no (refer to DO’s and DONT’s above).

Disconnect all loads and enter idle mode.

file:///tmp/jb/_build/html/_images/duckiebattery-front.png

The Duckiebattery is equipped with 2 USB type A outputs (port A and B) and 1 Micro USB

connector for charging.

Fig. 65 The Duckie Power Bank ports.

It also has 4 LEDs representing the state of charge. Push the button on the side of the

battery pack to turn on the LEDs. The LEDs indicate the residual charge according to:

Table 4 Duckiebattery LED charge

indicators

LED State of Charge

D1 3-25%

D2 25-50%

D3 50-75%

D4 75-100%

If D1 is flashing (0.5Hz) while not being charged, the battery pack is at a critical low charge

(less than 3%).

Charging

The battery pack is charged via the Micro USB port with a 5V supply. While charging, one of

the LEDs will be flashing (0.5Hz) indicating where in the charge cycle it is.

When the battery pack is connected to the charger, the output voltage of port A and

B will turn off for around 280ms:

Fig. 66 The Duckie Power Bank output voltage drops when plugging in and

removing the charger.

This is an unwanted effect which will cause the Raspberry Pi, if on, to reboot.

likewise, when disconnecting the charger, the outputs will turn OFF for 20ms

causing the Raspberry Pi to reboot as well.

Furthermore, while the Duckiebattery supports pass-through (both outputs A and B will

function while the Duckiebattery is being charged), during charge the output voltage of port A

and B will drop around 300mV which might cause an under voltage warring of the Raspberry

Note

Note

file:///tmp/jb/_build/html/_images/duckiebattery-ports.png
file:///tmp/jb/_build/html/_images/duckiebattery-voltage-profile.png

Pi. This will put the Raspberry Pi in a throttling mode limiting its performance.

Discharging

The output ports A and B have an unloaded output voltage around 5.1V. To turn the outputs

on simply plug in a load on port A/B, for example a Raspberry Pi and a Duckietown Hut, or

push the button.

The output ports will automatically turn off if less than 100mA is being drawn.

To turn the outputs back on simply push the button or reconnect the USB connector.

The combined output current is limited to 2.8A.

The battery capacity is 7.4Ah at 5V with an efficiency as follows:

Table 5 Duckie Power Bank discharge

statistics

Load Efficiency Autonomy

1 A 91% 6h 44m

1.5 A 88% 4h 33m

2 A 85% 3h 09m

2.5 A 79% 2h 21m

