
The Learning Experiences Developer Manual

Contents

Introduction

What is a Duckietown LX?

LX Features and Activities

How To - Complete an LX

Step 1: Environment Setup

Step 2: Using the dts code workflow

Step 3: What’s Next?

How To - Create an LX

Step 1: Review the LX Structure

Step 2: Create a New LX

Step 3: Develop Your Activities

Step 4: Publish Your LX

Behind the Scenes

Digging Deeper: The LX Build Process

Digging Deeper: The dts code Workflow

A Duckietown Learning Experience provides a structured template for using the Duckietown

infrastructure to create and work through high-quality learning activities.

The goal of this developer manual is to provide all the tools you need to work through Learning

Experiences and then use the skills you develop to create your own custom Duckiebot demos and LX.

What is a Duckietown LX?

A learning experience is a stand-alone block of activities that is self-contained and ideally can

plug and play into a full course of materials.

Learners can complete activities from the Duckietown LX library. This will allow you to dive into the

fundamental topics of robotics and then immediately implement behaviors on your Duckiebot using

your new skills. See How To - Complete an LX to jump right in.

Instructors can create additional custom learning experiences using the Duckietown development

tools to present course content as interactive notebooks. To cement topics in practice, you can

seamlessly integrate additional robot activities and simulated challenges in a preconfigured

environment. This prevents students from getting lost in debugging before their project even begins by

eliminating extra setup steps and smoothing over complex implementation details. You can see all

available features on the following page and the LX creation tutorial in How To - Create an LX.

Outcomes

Definition

Outcomes after completing a learning experience should generally be actionable skills to demonstrate

new knowledge.

These skills are verified through the culminating a demo activity in each LX that can be run on a

simulated or real world Duckiebot and evaluated in a challenge.

Learning Goals

LX developers should answer the following questions in the LX description contained in each

README. Anyone working through an LX should use this information to direct their efforts as they

choose and work through LX:

Question Example

What will the LX learner gain from this

experience?

Learners will be able to describe and implement

a PID controller for a differential drive robot.

What are the output activities of the experience?

Learners will tune and test their PID controller on

a Simulated Duckiebot to achieve a distance

traveled goal.

What is the prerequisite knowledge and where

can learners find it?

This LX depends on students having completed

the Duckietown ROS LX for the fundamentals of

using ROS messages.

LX Features and Activities

Let’s start by understanding each of the learning experience activities available and how they might be

used.

The duckietown-lx repository on GitHub contains the learning experiences developed by the

Duckietown team - we’ll break down the Object Detection LX as the main example here.

Learning Experiences are run using the dts code workflow as described in How To -

Progress Through an LX. This command set gives students a streamlined environment and

powerful tools to complete activities.

The following activity types can be implemented with the Duckietown Learning Experience

infrastructure:

Notebook

Workbench Tool

Simulated Agent

Duckiebot Agent

Evaluation

Activity: Notebooks

Learners are immediately presented with the goals and workflow instructions for a learning experience

when they use dts code editor to spin up the preconfigured VSCode editor. Installing a local editor is

not necessary, and everyone begins with a uniform environment to complete the learning experience.

The notebooks directory will always contain the first activity.

Note

https://github.com/duckietown/duckietown-lx/tree/mooc2022/object-detection

A Notebook Activity introduces key concepts within a Jupyter notebook that learners can work through

to cement, visualize, and implement their understanding. Tab through the gallery of notebooks below

for a few examples of notebook features.

Image Filtering Object Detection Hello World

Learners may also be directed to implement long-form solutions in the provided solution package.

This code can be imported to notebooks for visualization and testing or used by an agent node on the

Duckiebot.

Providing Guidance

Students should be given instruction within the notebooks on how to progress through the LX activities

in order. Every learning experience should also revolve around a main Learning Goal (or set of learning

goals), documented at the beginning of the README file.

The Object Detection learning experience will take you through the process of collecting data

from the Duckietown simulator and formatting it to be used to train a neural network to

perform object detection using the robot’s camera image. We will use one of the most popular

object detection neural networks, called YOLO (v5). Finally you will integrate this trained

model into the autonomy stack to create a Duckiebot agent that stops whenever an object

(duckie) is detected in the road.

Activity: Workbench Tool

A Workbench Activity provides a VNC that is used for running tool, simulation, and agent based

activities. This is a fully functional Desktop environment with the Duckietown and ROS dependencies

installed and can be started by simply running dts code workbench. Instructors can develop custom

tools or incorporate any standard ROS tool into the LX activity.

The Object Detection LX uses the workbench environment to run a dataset augmentation tool for

learners.

It can also be used to display the Object Detection model results as applied to an image stream from

the Duckiebot for visual analysis.

Example Learning Goal

Activity: Simulated Agent

The Workbench can also run simulated Duckiebot agents, allowing learners to test their robot

behaviors in a virtual environment.

Activity: Duckiebot Agent

Once their solution works in simulation, learners may wish to run their solution on a real-world

Duckiebot in a Duckietown environment like the one shown below.

The Workbench can interface with the Duckiebot using the ROS network and run connected tools such

as keyboard control or rviz. Tab through the gallery below to see examples of a variety of tools for

interacting with Duckiebot agents.

Activity: Evaluation

Learners can evaluate their solutions to Learning Experience challenges locally and submit them to the

uploads your agent to the Duckietown Challenges Server for evaluation on the cloud.

Image Streams Rviz and Custom Tools Keyboard Control

https://challenges.duckietown.org/

Step 1: Environment Setup

Before working through any Duckietown Learning Experience, you first need to set up your

development environment.

� Complete the following setup steps carefully to prevent running into bugs later on. �

1 - Requirements

We assume in this manual that you have already set up your Duckietown development environment

following the steps in the Setup - Laptop and Setup - Account sections of the Duckiebot operation

manual.

Install the following dependency libraries,

Important

https://staging-docs.duckietown.com/daffy/opmanual-duckiebot/setup/setup_laptop/index.html#laptop-setup
https://staging-docs.duckietown.com/daffy/opmanual-duckiebot/setup/setup_account/index.html#dt-account

We then update the Duckietown shell and the shell commands,

2 - Docker Configuration

After completing Duckietown development setup instructions, add your docker.io credentials to the

Duckietown shell by running the following command,

These are the <USERNAME> and <PASSWORD> that you use to log in to DockerHub

(hub.docker.io) when setting up Docker in the Duckiebot operation mmanual.

3 - SSL certificate

We use SSL certificates and TLS encryption to guarantee the highest standard of safety and privacy.

Let us set up a local SSL certificate needed to run the learning experience editor inside your browser,

4 - The hello-world LX

We will be walking through the hello-world LX in following pages. Fork and clone the duckietown-lx

repository to follow along and complete the tutorial activities. This will give you access to the full library

of Duckietown Learning Experiences.

1. To store your own code, while also keeping the ability to pull updates from our version of this

repo, create your own fork. Start by pressing “Fork” in the top right corner of the duckietown-lx

repository page on GitHub. Your new repository fork that will appear in your GitHub repository list

as:

Then clone your new repository, replacing your GitHub username in the command below,

2. Now we will configure the Duckietown version of this repository as the upstream repository to

sync with your fork. List the current remote repository for your fork,

Specify a new remote upstream repository,

Confirm that the new upstream repository was added to the list,

Open a terminal and run the following command,

sudo apt install libnss3-tools

pip3 install -U duckietown-shell
dts update

dts challenges config --docker-username <USERNAME> --docker-password <PASSWORD>

Note

dts setup mkcert

 <your_username>/duckietown-lx

 git clone -b mooc2022 git@github.com:<your_username>/duckietown-lx

 git remote -v

 git remote add upstream https://github.com/duckietown/duckietown-lx

Linux macOS Windows

http://hub.docker.io/
https://github.com/duckietown/duckietown-lx
https://github.com/duckietown/duckietown-lx

You can now push your work to your own repository using the standard GitHub workflow, and the

beginning of every learning experience will prompt you to pull from the upstream repository -

updating your exercises to the latest Duckietown version,

And that’s it! You are ready to move on to the next section and start your development journey with the

dts code workflow.

Step 2: Using the dts code workflow

The dts code workflow is a set of simple but powerful Duckietown shell commands that you can use to

edit, test, and run Duckietown Learning Experiences (LX). These tools can

spin up a development environment

run new robot behaviors in the simulator and on a Duckiebot

submit your results to Duckietown challenges

and much more

We will gain familiarity with this workflow by walking through the hello-world learning experience from

the duckietown-lx repository as an example - instructions on how to fork and clone this repository are

located in Step 1: Environment Setup.

Getting started

Complete the following steps to start your development journey with the dts code workflow:

� Step 1

Open a terminal and navigating to the duckietown-lx/hello-world-lx directory.

� Step 2

Glance over the following command list for a preview of your toolkit.

� Step 3

Continue on to the next page to start your first learning experience!

The dts code commands set

dts code build

Builds a learning experience into a Docker image that can then be run.

dts code edit

Spins up a browser-based development environment that can be used to work through the Learning

Experience (LX) using VSCode.

dts code workbench

Creates a virtual environment with Desktop icons that will allow you to easily run activities, simulate a

Duckiebot directed through a virtual world by your control algorithms, or execute a demo on your real

world Duckiebot - all with debugging and visualization tools to help you along the way.

dts code evaluate

Evaluates your solutions to the learning experience activities on your local machine to quickly inform

you of your progress.

dts code submit

 git remote -v

 git pull upstream mooc2022

https://github.com/duckietown/duckietown-lx

Submits your work to the Duckietown Challenges Server so that you can monitor your results and view

the work of other developers around the world.

Remember that in addition to the dts code workflow, you also have the complete set of

Duckietown development tools at your disposal for building and running the projects within

each learning experience.

Check out the Duckiebot and DTProject development pages for more helpful Duckietown

shell commands.

dts code build

What does it do?

The dts code build command builds the learning experience package into a Docker image that will

be used by each of the other commands in the workflow.

The first step to working through any learning experience is to build it.

Strengthen your iterative development habits by beginning every work session with a fresh

build of your LX. This will help ensure that you don’t continue development on top of any

previous errors.

Prerequisites

Always make sure that your system is up-to-date before starting a new learning experience. If you

haven’t yet installed the Duckietown shell and configured your development environment, return to the

Step 1: Environment Setup before continuing.

Update the shell commands:

Update your laptop/desktop:

Update your Duckiebot:

How do I run it?

First, navigate into the directory containing the hello-world learning experience (or the root directory of

the LX you are working on completing).

duckietown-lx/hello-world-lx

TODO Update the URL to the challenges server once we move to duckietown.com.

Tip

Hint

dts update

dts desktop update

dts duckiebot update [ROBOT_NAME]

https://challenges.duckietown.org/
https://staging-docs.duckietown.com/daffy/opmanual-duckiebot/operations/software_tools/index.html#ops-tools
https://staging-docs.duckietown.com/daffy/devmanual-software/beginner/dtproject/index.html#dtproject

Fig. 1 List of LX directories with the hello-world-lx directory highlighted.

All dts code commands should be executed inside the root directory of the learning

experience.

Then run

You will see the following message once your LX has built successfully,

Fig. 2 Success message that indicates a successful LX build.

For more information about what is happening during your build process, you can run any dts code

command in debug mode using the --debug flag.

Important

dts code build

Troubleshooting

If you run into any issues while building the image, you can search the troubleshooting symptoms

below or reference the How to get help section of this manual.

What’s Next?

Now that you’ve built the hello-world learning experience, continue on to the next page to open the

editor and complete your first notebook activities.

Extra Options

If this is your first time using the dts code workflow, don’t worry about the following section

just yet. Continue on to the next page to open you first LX activity.

Once you are comfortable with the dts code workflow, you may want to use some additional control

provided over each command. This section documents each of the flags available to extend the dts

code build command.

You can also explore the Behind the Scenes - dts code build chapter for more details on what happens

in the background when you run the dts code build command.

Command options

dts code editor

What does it do?

The dts code editor command provides a local code editor that you will use to work through learning

experience notebooks and develop agents to run on your Duckiebot - right in your browser.

dts --debug code build

Troubleshooting

SYMPTOM dts : The path '/home/myuser/not_an_lx_directory' does not

appear to be a Duckietown project. : The metadata file

'.dtproject' is missing.

RESOLUTION You need to be in the root directory of the LX in order to run the dts

code commands.

Warning

usage: dts [-h] [-C WORKDIR] [-H MACHINE] [-u USERNAME] [--no-pull] [--no-cache] [--
push] [--recipe RECIPE] [--registry REGISTRY] [-L LAUNCHER] [-b BASE_TAG] [-v] [--
quiet]

optional arguments:
 -h, --help show this help message and exit
 -C WORKDIR, --workdir WORKDIR
 Directory containing the project to be built
 -H MACHINE, --machine MACHINE
 Docker socket or hostname to use
 -u USERNAME, --username USERNAME
 The docker registry username to use
 --no-pull Skip updating the base image from the registry
 --no-cache Ignore the Docker cache
 --push Push the resulting Docker image to the registry
 --recipe RECIPE Path to use if specifying a custom recipe
 --registry REGISTRY Docker registry to use
 -L LAUNCHER, --launcher LAUNCHER
 The launcher to use as entrypoint to the built container
 -b BASE_TAG, --base-tag BASE_TAG
 Docker tag for the base image. Use when the base image is
also a development version
 -v, --verbose Be verbose
 --quiet Be quiet

How do I run it?

Open the code editor by running the following command

Wait for a URL to appear on the terminal, then click on it or copy-paste it in the address bar of your

browser to access the VSCode powered code editor.

If your Operating System supports it, the page should be opened automatically for you in a

new browser tab as soon as it is ready to be opened.

Fig. 3 Url to access your VSCode editor in the browser.

The first thing you will see is the README document, which should contain the learning objectives for

the LX.

Fig. 4 The VSCode Learning Experience editor.

Once you have read about the learning experience goals in the README document, you can open the

notebooks directory using the file navigation on the left side of the editor. The activities in the

notebooks directory contain the main guidance and content of a learning experience.

dts code editor

Note

Fig. 5 The first Hello World notebook will guide you through editing and running the

activity.

Follow the instructions to complete each notebook in sequence. If you are working through the hello-
world LX, complete the following notebooks to create an image filter and explore the editor features:

01-Notebook-Activities

02-Code-Activities

Then return to this page and continue on to the dts workbench command.

Strengthen your test-driven development (TDD) habits by using the Testing interface in the

VSCode editor to run the provided unit tests for each function you complete in an LX. This will

confirm that your solution performs as expected before you run it in simulation or on your

Duckiebot. Note that the beaker symbol to open the Testing interface may not appear in the

sidebar until after you’ve opened one of the Python files in the packages directory.

Troubleshooting

If you run into any issues using this command, you can search the troubleshooting symptoms below or

reference the How to get help section of this manual.

What’s Next?

Once you’ve completed the first two notebooks in the hello-world learning experience, continue on to

the next page to use the workbench tools and drive a Duckiebot in the Duckietown simulator.

Extra Options

If this is your first time using the dts code workflow, don’t worry about the following section

just yet. Continue on to the next page to run your first LX activity.

Once you are comfortable with the dts code workflow, you may want to use some additional control

provided over each command. This section documents each of the flags available to extend the dts

code editor command.

You can also explore the Behind the Scenes - dts code editor chapter for more details on what

happens in the background when you run the dts code editor command.

Command options

Hint

Troubleshooting

SYMPTOM dts : The path '/home/myuser/not_an_lx_directory' does not

appear to be a Duckietown project. : The metadata file

'.dtproject' is missing.

RESOLUTION You need to be in the root directory of the LX in order to run the dts

code commands.

Warning

dts code workbench

What does it do?

The dts code workbench command runs the workbench portion of a learning experience, which

provides a virtual desktop tool (the VNC) with three different purposes,

1. VNC Visualization Tools: In any LX notebook activity, you may be directed to use the dts code

workbench command to open the VNC and run a visualization or calibration tool. This provides a

more advanced interface to complement the notebook experience;

2. Duckietown Simulator: The simulator interface runs agents developed in the LX on a Duckiebot

in a virtual world. Keep an eye out for any duckies that may be wandering around the simulated

road;

3. Duckiebot Agent Interface: The dts code workbench command is also your interface for

running agents on your real world Duckiebot.

The focus of the workbench is to provide a streamlined experience for testing and deploying the

activities and solutions that you develop while working through a learning experience.

How do I run it?

1. To run an activity visualization or calibration in the VNC, run

and follow the instructions in the notebook to select the correct desktop icon and run the tool.

2. To test in simulation, use the command

There will be two URLs popping up to open in your browser: one is the direct view of the

simulated environment. The other is VNC and only useful for some exercises, follow the

instructions in the notebooks to see if you need to access VNC.

This simulation test is just that, a test. Don’t trust it fully. If you want a more accurate metric of

performance, use the dts code evaluate command described on the next page.

3. You can test your agent on the robot using the command,

This is the modality “all software runs on the robot”.

You can also test using

usage: dts [-h] [-C WORKDIR] [-u USERNAME] [--distro DISTRO] [--bind BIND] [--no-
build] [--build-only] [--recipe RECIPE] [--image IMAGE] [--plain] [--no-pull] [--
keep] [--impersonate IMPERSONATE] [-v]

optional arguments:
 -h, --help show this help message and exit
 -C WORKDIR, --workdir WORKDIR
 Directory containing the project to open the editor on
 -u USERNAME, --username USERNAME
 The docker registry username to use
 --distro DISTRO Custom distribution to use VSCode from
 --bind BIND Address to bind to
 --no-build Whether to skip building VSCode for this project, reuse last
build instead
 --build-only Whether to build VSCode for this project without running it
 --recipe RECIPE Path to a custom recipe to use
 --image IMAGE Docker image to use as editor (advanced use only)
 --plain Whether to skip building VSCode for this project, use plain
VSCode instead
 --no-pull Whether to skip updating the base VSCode image from the
registry
 --keep Whether to keep the VSCode once done (useful for debugging)
 --impersonate IMPERSONATE
 Username or UID of the user to impersonate inside VSCode
 -v, --verbose Be verbose

 dts code workbench --sim

dts code workbench --sim

dts code workbench --duckiebot [ROBOT_NAME]

This is the modality “drivers running on the robot, agent running on the laptop.”

If you run into any issues using this command, you can search the troubleshooting symptoms below or

reference the How to get help section of this manual.

Troubleshooting

Extra Options

If this is your first time using the dts code workflow, don’t worry about the following section

just yet. Continue on to the next page to evaluate the soliution to your first LX activity.

Once you are comfortable with the dts code workflow, you may want to use some additional control

provided over each command. This section documents each of the flags available to extend the dts

code workbench command.

You can also explore the Behind the Scenes - dts code workbench chapter for more details on what

happens in the background when you run the dts code workbench command.

Command options

dts code workbench --duckiebot [ROBOT_NAME] --local

Troubleshooting

SYMPTOM dts : The path '/home/myuser/not_an_lx_directory' does not

appear to be a Duckietown project. : The metadata file

'.dtproject' is missing.

RESOLUTION You need to be in the root directory of the LX in order to run the dts

code commands.

Troubleshooting

SYMPTOM These errors appear: requests.exceptions.HTTPError: 500 Server

Error: Internal Server Error for url:

http+docker://localhost/v1.43/containers/84ce.../start

and it is complained that certain ports are in conflict and could not be

used.

RESOLUTION Please check your running docker containers and ports with: docker

ps --format "table

{{.Names}}\t{{.Image}}\t{{.ID}}\t{{.Ports}}" And stop the

ones unnecessary, that occupy the mentioned conflicted ports.

Warning

dts code evaluate

What does it do?

The dts code evaluate command runs your code to implement a robot agent at the end of each LX

and evaluates it against some set of performance metrics for the Duckiebot. This might be distance

travelled in an obstacle avoidance challenge, intersections successful and lawfully handled in the

Duckietown city, or any other hurdle that the LX creator may have defined for you.

Details of the evaluation metrics will be outlined in the LX README file.

How do I run it?

We suggest you evaluate your work locally before submitting your solution. You can do so by running

the following command,

This should take a few minutes.

Wait for a URL to appear on the terminal, then click on it or copy-paste it in the address bar of your

browser to access the real-time visualization of your evaluation simulation and statistics.

If you run into any issues using this command, you can search the troubleshooting symptoms below or

reference the How to get help section of this manual.

Troubleshooting

Usage:

 $ dts code workbench --sim
 $ dts code workbench --duckiebot [ROBOT_NAME]

optional arguments:
 -h, --help show this help message and exit
 -C WORKDIR, --workdir WORKDIR
 Directory containing the project to bring up
 --duckiebot DUCKIEBOT, -b DUCKIEBOT
 Name of the Duckiebot on which to run the exercise
 -s, --simulation, --sim, --simulator
 Should we run it in the simulator instead of the real robot?
 --stop Just stop all the containers
 --local, -l Should we run the agent locally (i.e. on this machine)?
Important Note: this is not expected to work on MacOSX
 --recipe RECIPE Path to use if specifying a custom recipe
 --pull Should we pull all of the images
 --no-cache Ignore the Docker cache
 --bind BIND Address to bind to (VNC)
 --logs LOGS Use --logs NAME:LEVEL to set up levels. The container names
and their defaults are [agent:Levels.LEVEL_DEBUG
 manager:Levels.LEVEL_NONE simulator:Levels.LEVEL_NONE
bridge:Levels.LEVEL_NONE vnc:Levels.LEVEL_NONE]. The levels are
 none, debug, info, warning, error.
 --log_dir LOG_DIR Logging directory
 -L LAUNCHER, --launcher LAUNCHER
 Launcher to invoke inside the exercise container (advanced
users only)
 --registry REGISTRY Docker registry to use (advanced users only)
 --interactive, -i Will run the agent in interactive mode with the code mounted
 --keep Do not auto-remove containers once done. Produces garbage
containers but it is very useful for debugging.
 --sync RSync code between this computer and the agent
 --challenge CHALLENGE
 Run in the environment of this challenge.
 --scenarios SCENARIOS
 Uses the scenarios in the given directory.
 --step STEP Run this step of the challenge
 --nvidia Use the NVIDIA runtime (experimental).

dts code evaluate

Troubleshooting

SYMPTOM dts : The path '/home/myuser/not_an_lx_directory' does not

appear to be a Duckietown project. : The metadata file

Extra Options

If this is your first time using the dts code workflow, don’t worry about the following section

just yet. Continue on to the next page to submit the soliution to your first LX activity.

Once you are comfortable with the dts code workflow, you may want to use some additional control

provided over each command. This section documents each of the flags available to extend the dts

code evaluate command.

You can also explore the Behind the Scenes - dts code evaluate chapter for more details on what

happens in the background when you run the dts code evaluate command.

Command options

dts code submit

What does it do?

The dts code submit command is very similar to the dts code evaluate command, but instead of

evaluating your agent’s performance on your local machine, it uploads your agent to the Duckietown

Challenges Server for evaluation on the cloud.

'.dtproject' is missing.

RESOLUTION You need to be in the root directory of the LX in order to run the dts

code commands.

Warning

usage: dts [-h] [-C WORKDIR] [-H MACHINE] [-a ARCH] [-u USERNAME] [--recipe RECIPE]
[--no-pull] [--no-cache] [--impersonate IMPERSONATE]
 [-c CHALLENGE] [-L LAUNCHER] [-v]

optional arguments:
 -h, --help show this help message and exit
 -C WORKDIR, --workdir WORKDIR
 Directory containing the project to submit
 -H MACHINE, --machine MACHINE
 Docker socket or hostname where to build the image
 -a ARCH, --arch ARCH Target architecture for the image to build
 -u USERNAME, --username USERNAME
 The docker registry username to use
 --recipe RECIPE Path to use if specifying a custom recipe
 --no-pull Skip pulling the base image from the registry (useful when
you have a local BASE image)
 --no-cache Ignore the Docker cache
 --impersonate IMPERSONATE
 Duckietown UID of the user to impersonate
 -c CHALLENGE, --challenge CHALLENGE
 Challenge to evaluate against
 -L LAUNCHER, --launcher LAUNCHER
 The launcher to use as entrypoint to the submission
container
 -v, --verbose Be verbose

https://challenges.duckietown.org/

Fig. 6 The Duckietown challenges server displaying results for submission simulations.

How do I run it?

When you are ready to submit your solution to the challenge for your LX, use the following command,

This will package all of your code and send it to the Duckietown Challenges Server for evaluation. The

command will output a URL that you can use to follow your submission and compare your agent with

other developers’ solutions from all over the world.

If you run into any issues using this command, you can search the troubleshooting symptoms below or

reference the How to get help section of this manual.

Troubleshooting

Extra Options

If this is your first time using the dts code workflow, don’t worry about the following section

just yet. You now have all the tools to complete your first learning experience - go for it!

Once you are comfortable with the dts code workflow, you may want to use some additional control

provided over each command. This section documents each of the flags available to extend the dts

code evaluate command.

You can also explore the Behind the Scenes - dts code submit chapter for more details on what

happens in the background when you run the dts code submit command.

Command options

dts code submit

Troubleshooting

SYMPTOM dts : The path '/home/myuser/not_an_lx_directory' does not

appear to be a Duckietown project. : The metadata file

'.dtproject' is missing.

RESOLUTION You need to be in the root directory of the LX in order to run the dts

code commands.

Warning

Step 3: What’s Next?

We have seen how a few Duckietown shell commands is all we need to learn and develop robotic

systems that will perform in the simulator or on a real world robot.

Find more Duckietown Learning Experiences

You can find example LX packages to walk through in the Duckietown Learning Experiences

repository.

Worried about forgetting the workflow?

Here are a few resources

1. Bookmark this development guide to come back to any time;

2. Run dts code in the terminal to display the list of available workflow commands. You can also

use the help flag -h after any command to get more details and a list of available options;

3. Download the Duckietown dts code workflow cheatsheet here to hang up around your

workspace: dts code Workflow Cheatsheet;

How to get help

If you run into any issues that can’t be solved using the troubleshooting sections in this development

manual, you can join the Duckietown community on Slack. There you can request an invitation to the

Duckietown Stack Overflow team and find other developers using Duckietown for a wide variety of

projects and learning experiences.

Create your own LX

You can begin developing your own custom learning experiences to teach others by continuing on to

the next section of this development guide: How To - Create an LX.

Step 1: Review the LX Structure

A learning experience is structured in three parts, each implemented by a different directory. These

directories are created for you when running the command dts lx create (more on this in the

following sections of this manual). When distributed, they will reside in three different Git repositories.

usage: dts [-h] [-C WORKDIR] [-H MACHINE] [-a ARCH] [-u USERNAME] [--recipe RECIPE]
[--no-pull] [--no-cache] [--impersonate IMPERSONATE]
 [-c CHALLENGE] [-L LAUNCHER] [-v]

optional arguments:
 -h, --help show this help message and exit
 -C WORKDIR, --workdir WORKDIR
 Directory containing the project to submit
 -H MACHINE, --machine MACHINE
 Docker socket or hostname where to build the image
 -a ARCH, --arch ARCH Target architecture for the image to build
 -u USERNAME, --username USERNAME
 The docker registry username to use
 --recipe RECIPE Path to use if specifying a custom recipe
 --no-pull Skip pulling the base image from the registry (useful when
you have a local BASE image)
 --no-cache Ignore the Docker cache
 --impersonate IMPERSONATE
 Duckietown UID of the user to impersonate
 -c CHALLENGE, --challenge CHALLENGE
 Challenge to evaluate against
 -L LAUNCHER, --launcher LAUNCHER
 The launcher to use as entrypoint to the submission
container
 -v, --verbose Be verbose

TODO Link Duckietown LX library page when created

https://github.com/duckietown/duckietown-lx
https://drive.google.com/file/d/1EWY4O6bjpesD68EdFjFEUJe9HglHqyW8/view?usp=sharing
https://join.slack.com/t/duckietown/shared_invite/enQtNTU0Njk4NzU2NTY1LWM2YzdlNmJmOTg4MzAyODc2YTI3YTc5MzE2MThkZGUwYTFkZWQ4M2ZlZGU1YTZhYjg5YTgzNDkyMzI2ZjNhZWE

If you are reading this as a learner, you will only need to use the single LX directory provided to you by

your instructor or class instructions. All the necessary behind the scenes components to drive the LX

activities will be handled automatically by dts.

Three parts make a single LX

A Learning Experience (LX) is broken down into three parts:

A learner’s workspace;

A back-end;

A solution;

The learner’s workspace

The learner’s workspace (also referred to as the meat) is the only part that a learner will ever need to

interact with. It contains instructions, interactive learning materials (e.g., jupyter notebooks) and

boilerplate code that the learner will have to work on, complete, and in some cases submit.

The back-end

The back-end (also referred to as the recipe) is what defines the rules of a learning experience. It

contains all those files that are necessary for the learner’s workspace to function but must be protected

from the learner’s edits. The recipe constitues the immutable part of a learning experience, and it is

shared by all the learners’ workspaces and solutions of said LX;

For example, in a robot localization exercise, the back-end might have access to a map of the

environment and a trajectory taken by a robot within it. The back-end would use this data to generate

simulated sensors’ readings and pass those on to the learner’s workspace. The learner is required to

implement a system that can consume these readings and reconstruct the original trajectory taken by

the robot. In this case, the back-end must protect the ground-truth trajectory of the robot or else the

solution would be exposed to the learner, effectively invalidating the usefulness of any grading.

The solution

The solution part is simply a copy of the learner’s workspace but with all the solutions to the activities

and exercises already implemented. This is usually used for two main reasons: (i) to make sure that

the boilerplate provided in the learner’s workspace is enough for a learner to implement a correct

solution to the problems presented; (ii) to serve as example solutions to problems that are optional or

not graded;

The reason why the back-end the learner’s workspace are also respectively referred to as

the recipe and the meat comes from an analogy with a cooking scenario. The back-end

defines the rules, so it is a recipe for how the learning experience works, the learner brings

the content, the solution, the substance, hence the meat that together with the recipe makes

a cooked meal, in this case a solved learning experience. Morevoer, similarly to how better

cuts of meat lead to better tasting meals, better solutions lead to better scores for the learner.

Solving a learning experience just became a hunt for the best meat.

Development Workspace

An LX development workspace is set up on running dts lx create. This command generates a

workspace directory that is named using a filesafe version of the LX name. Fig. 7 shows an example of

how an LX development workspace is structured.

Tip

Fig. 7 Directory structure of a LX development project named How To Robot!

generated by dts lx create.

The learner’s workspace (the meat)

The learner’s workspace is stored inside the directory lx (how-to-robot/lx in Fig. 7). Fig. 8 shows an

example of what a learner’s workspace looks like.

Fig. 8 Directory structure of the LX template generated by dts lx create.

The back-end (the recipe)

The back-end is stored inside the directory recipe (how-to-robot/recipe in Fig. 7). Fig. 9 shows an

example of what a back-end directory looks like.

Fig. 9 Directory structure of the LX recipe template generated by dts lx create.

The solution

When a new LX is created, the learner’s workspace and the solution located in the solution directory

are identical. The instructor is then responsible for adding a fully developed and tested solution, with

example agents and activity solutions.

While developing a new LX, it is good practice to start working on the solution first. Once the

solution is in place, parts of the solution with relative pedagogical value can be stripped out

and replaced with placeholders effectively producing a boilerplate code that can populate the

learner’s workspace. This procedure guarantees that the resulting boilerplate is (by

construction) enough for the learner to achieve a valid solution.

Step 2: Create a New LX

New learning experiences are developed within the Development Workspace. This structure provides a

working directory containing all three of the required directories

lx, recipe, and solution - for your LX in one place.

What do I need to know ahead of time?

Some information will be required to initialize your LX:

Table 1 Development LX requirements

Information Description

Title

This is a human readable name that will also be

converted into a safe file format to name your LX

directories. For example, How to Robot! is used

as the title and then converted to how-to-robot

in file and directory names.

Description

This should contain a learning goal for the LX

and short summary of what students will

accomplish.

Dependencies

The dts lx create interface allows you to list

initial apt and python3 dependencies so that you

can ensure your base build works prior to

development.

Tip

You can always go back and change these values within the appropriate project files later, but

beginning your work with a title, learning goal, and list of general dependencies will help focus

your activity development.

Creating an LX development project

Create your LX development project by running

Wait for the form UI to appear or click on the URL provided in the terminal to access the following form:

Fig. 10 The LX create tool configuration interface.

Once you have filled in each of the intial configuration details, click on Generate LX.

You should receive the following message.

Note

dts lx create

Fig. 11 The message indicating your new LX development project was successfully

generated.

Return to the command line to ensure your project was created successfully.

Verify your template

When the create process is finished, verify that your LX development project structure matches the

following

Troubleshooting

SYMPTOM The form does not close or give the success message when I select

Create. What now?

RESOLUTION If you have any issues with the form submission, check your

command line for any error messages associated with the data you

provided. Then resubmit the form.

file:///tmp/jb/_build/html/_images/create-success.png

Fig. 12 Directory structure of the LX development project generated by dts lx

create.

The first step after creating a new development project should always be to run dts code build

--recipe ../recipe in the <your-lx-workspace>/lx directory to ensure that the template was

initialized properly.

When working in the development workspace, always append the --recipe flag to any dts

code commands in order to specify your local development version of the recipe.

Jumping into to development …

The next section of this development manual focuses on providing context and tutorials for each type

of learning experience activity that you can add to your new LX template. An LX may have one,

several, or all activity types included, so read through the educational purposes associated with each

one to determine what is best for your desired learning outcome.

Step 3: Develop Your Activities

Notebook Activities

Notebooks offer a clean interface to provide lesson content, visualizations, and instructions for

proceeding through an LX.

At the core, a Duckietown Learning Experience notebook has all the possibility of a classic Jupyter

notebook but with every library and functionality from the Duckietown ecosystem added in.

Attention

https://docs.jupyter.org/en/latest/

Fig. 13 Each challenge and linked learner submissions can be found on the

Duckietown Challenges Server.

Take a moment to explore the notebooks in the Demo Learning Experience to see a few of the

integration options.

Edit zones

The following table contains a list of the files and directories that you may need to update to implement

this type of LX activity. If you would like a full walkthrough showing how to implement notebooks, skip

to the next section.

https://github.com/duckietown/duckietown-lx/tree/demo-lx/demo-lx/notebooks

Table 2 Edit zones

Feature File Location Purpose

Jupyter Notebook lx/notebooks/01_first_notebook.ipynb

Notebook files contain the

knowledge portion of an

LX, walking students

through activities,

visualizations, and

development.

Learner Solution Code lx/packages/solution_module.py

Python files for learner

implementations should

remain in the packages

directory, with learners

filling in TODOs as

instructed by the

notebooks.

Notebook Dependencies
recipe/dependencies-apt.txt,

recipe/dependencies-py3.txt

Required libraries are built

into the VSCode editor

environment by including

them in the recipe

dependency files.

Development Guidelines

Notebooks vs. Packages: As a general rule, example code and visualizations should be

developed by students directly in the notebooks.

Code for agents and other packages should be placed in the packages/solutions directory

for students to edit in the respective Python files, then imported into the notebooks and unit

tests for visualization and testing of their results.

Notebooks should generally walk through the knowledge required to implement some

behavior on the Duckiebots, providing solutions to every notebook activity along way until the

culminating activity in the final notebook.

Students should then be editing package files to implement their work as directed by the

notebook instructions, and the solution should be hidden in the separate solutions repository

to enable evaluation.

The format of a Duckietown Learning Experience paired with the dts code workflow enables

students to iteratively edit and run solutions as they walk through notebookds and develop

their understanding of a topic.

Within this framework, shorter notebooks with concrete goals that build learner skills up to a

final agent challenge are more effective than one long, content-heavy notebook.

Tutorial: Adding Content to Notebooks

Step 0: Confirm your LX workspace setup

Notebooks vs packages:

A note on solutions:

Notebook length:

The first step after creating a new development project should always be to run dts code build

--recipe ../recipe in the <your-lx-workspace>/lx directory to ensure that the template was

initialized properly.

Step 1: Determine the learning and development goals

Defining the learning goal will inform the content and visualization that you add to the notebook.

Defining a development goal will allow you to set learners up with a clear purpose and provide tests

that ensure they successfully completed any coding exercises included in the notebook or a linked

solution script.

Step 2: Determine dependencies

If possible, determine the required Duckietown and external libraries and add them to a setup cell at

the beginning of the notebook. This will confirm a lack of later import errors.

You can install external libraries by adding to the recipe/dependencies-apt.txt and

recipe/dependencies-py3.txt files. Any dependencies added here will be available in the VSCode

editor environment.

Step 3: Content and code recommendations

Content is added to a Duckietown Learning Experience notebooks in the same Markdown format as

any standard Jupyter notebook. For more information, see the Jupyter notebook docs.

As noted above, students should be editing package files to implement their work as directed by the

notebook instructions, and the solution should be hidden in the separate solutions repository to enable

evaluation.

This means that there are three places you can choose to have learners write solution code.

1. Directly in the notebook cells. This should be used for content examples and practice.

2. In a solution python script in the lx/packages/solution directory that is imported into the

notebook for visualization. All functions should be predefined with clear TODOs marked for

learners to complete as directed by the notebook.

3. In a solution python script in the lx/packages/solution directory that is then imported into the

Duckiebot agent code located in the recipe for simulation and workbench activities (more on this

in the following sections).

As a general rule, notebooks do not have access to the packages in the recipe/solutions directory

where the base code is placed for Duckiebot agents. This is to prevent learners from editing agent

code to a confusing or unusable state.

In summary: Place visualization and content practice code in the notebook. Place learner solution

code in linked python scripts housed in the solutions directory.

https://docs.jupyter.org/en/latest/

Strengthen learner test-driven development (TDD) habits by using the Testing interface in the

VSCode editor to provide unit tests for each function to be completed in an LX.

This will confirm that their solution performs as expected before any attempts to run it in

simulation or on your Duckiebot. Note that the beaker symbol to open the Testing interface

may not appear in the sidebar until after one of the Python files in the packages directory has

been opened.

Step : Clean up and publish

Clear all cells of output to avoid publishing solutions. Then follow the workflow in Publishing your LX to

add your notebook and recipe updates to your Learning Experience repositories.

Workbench Tools

Educational purpose

Edit zones

The following table contains a list of the files and directories that you may need to update to implement

this type of LX activity. If you would like a full walkthrough showing how to implement VNC

experiences, skip to the next section.

Table 3 Edit zones

Feature File Location Purpose

Desktop Icon fill fill

Launch Script fill fill

Build Requirements fill fill

Experience Scripts fill fill

Tutorial

Simulated Agents

Hint

TODO Empty section here

TODO Complete the table and remove the fill placeholders.

TODO Empty section here

Educational purpose

Edit zones

The following table contains a list of the files and directories that you may need to update to implement

this type of LX activity. If you would like a full walkthrough showing how to implement VNC

experiences, skip to the next section.

Table 4 Edit zones

Feature File Location Purpose

Desktop Icon fill fill

Launch Script fill fill

Build Requirements fill fill

Experience Scripts fill fill

Tutorial

Duckiebot Agents

Educational purpose

Edit zones

The following table contains a list of the files and directories that you may need to update to implement

this type of LX activity. If you would like a full walkthrough showing how to implement VNC

experiences, skip to the next section.

Table 5 Edit zones

Feature File Location Purpose

Desktop Icon fill fill

Launch Script fill fill

Build Requirements fill fill

Experience Scripts fill fill

Tutorial

Evaluated Challenges

The agents developed in Duckietown Learning Experiences can be evaluated against a set of

benchmarks defined as a Duckietown Challenge.

Learners may evaluate their agent locally via

TODO Empty section here

TODO Complete the table and remove the fill placeholders.

TODO Empty section here

TODO Empty section here

TODO Complete the table and remove the fill placeholders.

TODO Empty section here

dts code evaluate

or on the Duckietown Challenges Server via

In each of these cases, a report is created against these benchmark metrics along with visualizations

of the agent’s behavior in simulation. Server submissions are appended to a running leaderboard,

allowing learners to compare their solutions with previous work.

You can explore previous challenge definitions and the related student submissions on the Duckietown

Challenges Server.

Fig. 14 Each challenge and linked learner submissions can be found on the

Duckietown Challenges Server.

Development Guidelines

It is recommended that the evaluation metrics for a challenge are clearly defined in the

Grading section of the Learning Experience README.md file to give learners clear performance

goals for their agent.

Students should also be encouraged to bookmark their development at each submission

attempt with a git commit referencing the submission number. This allows them to easily track

and revert to prior attempts.

dts code submit

Communicating benchmarks:

Encouraging frequent commits:

https://challenges.duckietown.org/

Tutorial: Creating and Linking a Duckietown Challenge

Learning Experiences can be associated with a predefined challenge by updating the fields in the file

recipe/submission.yaml.

The ability to create custom challenges for a Learning Experience has not yet been released.

Please check back later for future updates.

The following chapters outline the implementation steps and build requirements for each type of activity

that a learning experience may contain.

Use the activity descriptions to determine which type is right for the learning goal you are adding to

your LX.

Then jump right into the list of Edit zones for free form content development or walk through the

Development Tutorial for step-by-step examples.

We will be using the demo-lx Learning Experience as a running example in this section. You can clone

it from the Duckietown Learning Experiences GitHub repository to follow along.

While developing a new LX, it is good practice to start working on the solution first. Once the

solution is in place, parts of the solution with relative pedagogical value can be stripped out

and replaced with placeholders effectively producing a boilerplate code that can populate the

learner’s workspace. This procedure guarantees that the resulting boilerplate is (by

construction) enough for the learner to achieve a valid solution.

Step 4: Publish Your LX

Testing Your LX

Publishing Your LX

The three directories making up an LX can be published to their respective repositories using the dts

code publish command.

Attention

Tip

TODO

In progress: We will be developing a testing interface into the tools provided by

the dts lx command set soon. In the meantime, be sure to provide unit tests for

students in the tests directory. They can be easily run in VSCode using the

Testing plugin.

https://github.com/duckietown/duckietown-lx/tree/demo-lx

This provides a streamlined interface for managing repositories and branches so that your LX

directories will never be out of sync with each other across the development project.

What do I need to know ahead of time?

Some information will be required to publish your LX:

Table 6 LX publishing requirements

Information Description

Repository / Branch for each LX portion

Each of the three LX directories (lx, recipe,

solution), should be published to a different

repo. Students should have access to the LX and

optionally the solution, but the recipe should

remain private to avoid complicating the dts

code learner workflow.

Version

The version description will be used as the

commit message when you publish to a set of

GitHub repositories.

Publishing an LX development project

Publish your LX development project by entering the main project directory (one level above the lx,

recipe, and solution directories, not within them) and running

Wait for the form UI to appear or click on the URL provided in the terminal to access the following form:

Fig. 15 The LX publish tool configuration interface.

Then fill in the required information. First, the repository and branch for each of the three LX portions:

Fig. 16 The repository and branch that each directory will be published to.

dts lx publish

Each of the three LX directories (lx, recipe, solution), should be published to a different

repo. Students should have access to the LX and optionally the solution, but the recipe

should remain private to avoid complicating the dts code learner workflow.

The information you enter will autonmatically save, so that you can conveniently publish frequently. You

may update these values during any future publish as the form will appear every time.

Fig. 17 The default values will be saved for convenient iterative publishing.

The version description you provide will be used as the commit message when pushing to the

respositories.

Fig. 18 The publish commit message.

Select Publish and return to the terminal to confirm that your artifacts were pushed successfully.

Digging Deeper: The LX Build Process

Digging Deeper: The dts code Workflow

Important

TODO Goal: Define testing best practices and where to publish LX materials

By Duckietown, Inc.

© Copyright 2022.

