
The Book Writer Manual

Contents

How to contribute

Overview

The simple way: Github

The right way: Local editor

Format and Style

MyST syntax cheat sheet

Style guide

This book describes the features of our documentation system and the procedures to update it.

Overview

Where the documentation is

The documentation is broken down into a collection of books, with each book contained in a separate

repository called book-[name]:

For example:

book-devmanual-docs (this book)

book-opmanual-duckiebot

Documentation format

The documentation is written as a series of small files in Markdown format.

It is then processed by a series of scripts to create publication-quality PDF and an online HTML

version.

You can find all these artifacts produced at the site https://docs.duckietown.com.

The simple way: Github

The simplest way to contribute to the documentation is to hover the GitHub icon  at the top the

documentation page we want to edit, and then press “suggest edit” from the dropdown menu as shown

in the image below.

Fig. 1 Click on “suggest edit” button from the GitHub dropdown menu.

https://github.com/duckietown/book-devmanual-docs
https://github.com/duckietown/book-opmanual-duckiebot
https://docs.duckietown.com/


This will take you to the text editor on GitHub. One can make and commit the edits in only a few

seconds.

If you are in the Duckietown organization, then you can edit the files directly and commit to a personal

branch for review (more on this later). If you are not a member of Duckietown, you will be asked to fork

the repository first, follow the instructions shown on GitHub to do so.

Let us try this out and perform an edit:

Fig. 2 Perform the edits you had in mind.

Once done, check the temporary outcome by clicking on Preview changes. Note that not all

functionalities are visible by the preview. For significant changes to the documentation, refer to The

right way: Local editor.

Fig. 3 A preview of the changes.

At the end of the webpage, use the form provided to describe your changes. Start by choosing “Create

a new branch for this commit and start a pull request”, this will give you the opportunity to submit your

changes for review before they go live. Then fill in the commit message and description fields before

confirming by clicking on the “Propose changes” button (Fig. 4).



Fig. 4 Describe and commit.

This will take you to the Pull Request creation page (Fig. 5). Add any further details you want to share

with the reviewers in the Pull Request description text area.

Complete by clicking on the Create pull request button (Fig. 5).

Fig. 5 Create a pull request.

The right way: Local editor

This section describes the workflow to edit the documentation for one single book.

In a nutshell:

You fork the repos to your GitHub account.

You compile locally using a Docker container (no installation necessary).

You contribute by opening a pull request.

Workflow

GitHub setup

We assume that you have set up a GitHub account with working public keys.

See: Basic SSH config.

See: Key pair creation.

See: Adding public key on GitHub.

file:///tmp/jb/_build/html/+software_reference#github-access
file:///tmp/jb/_build/html/+software_reference#howto-create-key-pair
file:///tmp/jb/_build/html/+software_reference#github-access


Install Docker

Before you start, make sure that you have installed Docker.

Install the Duckietown Shell

Install the Duckietown Shell using these instructions.

Fork the book-[name] repository on GitHub

Navigate to the book repository page on GitHub, and click on the Fork  button at the top-right corner of

the page.

This will create a new repository on your account that is linked to the original one.

Checkout your fork locally

Check out the forked repository locally.

Do your edits

Do your edits on your local copy of the repository. The source files are in the directory src/.

Images are stored in the directory src/_images, while CSS and JS files can be dropped inside the

directory src/_static and will be automatically loaded.

Compile HTML

Compile using the dts docs commands in the Duckietown Shell:

Clean up artifacts and build cache with the command,

View the HTML

Once built, the book will be exported as HTML inside the directory html/. Open the file

html/index.html to start. Make sure that your changes look the way you want them to.

Compile PDF

Compile the book into a PDF file using the command,

View the PDF

Once built, the book will be exported as PDF inside the directory pdf/. Open the file pdf/book.pdf to

start. Make sure that your changes look the way you want them to.

Commit and push

Commit and push as you would do normally.

You need to be part of the Developers - Docs team on GitHub to be able to push changes to

the documentation repositories. Ask your supervisor if you don’t have access.

Make a pull request

Create a pull request to the original repository.

Publish artifacts directly

dts docs build 

dts docs clean 

dts docs build --pdf 

Attention

file:///tmp/jb/_build/html/+software_reference#docker
https://github.com/duckietown/duckietown-shell
https://github.com/orgs/duckietown/teams/developers-docs


While it is recommended to use Continuous Integration (CI) systems (e.g., Jenkins, CircleCI) to perform

automatic builds and deployments of the documentation, you can decide to push your local artifacts to

the corresponding HTTP server. You can do so by running the following command,

where [DNS] is the hostname of the documentation website to push the artifacts to, e.g.,

docs.duckietown.com.

This is only allowed on staging servers, e.g., staging-docs.duckietown.com. Only Jenkins

can publish to production.

This is a shortlisted version of the MyST syntax cheat sheet.

MyST syntax cheat sheet

Headers

Syntax Example Result

Level 1-6 headings, denoted

by number of #

Target headers

Syntax Example Result

See below how to reference

target headers.

Referencing target headers

You can specify the text of the target:

Quote

Syntax Example Result

quoted text

Thematic break

dts docs publish [DNS] 

Note

Note

# Heading level 1 
## Heading level 2 
### Heading level 3 
#### Heading level 4 
##### Heading level 5 
###### Heading level 6 

# MyST syntax cheat 
sheet 

(target_header)= 
(myst_cheatsheet)= 
# MyST Cheat Sheet 

[](myst_cheatsheet) 

[MyST syntax lecture](myst_cheatsheet) 

> text > this is a quote 

https://jupyterbook.org/en/stable/reference/cheatsheet.html


Syntax Example Result

Creates a horizontal line in

the output

Line comment

Syntax Example Result

See Comments for more

information.

Block break

Syntax Example Result

This is an example of

a block break

HTML block

Syntax Example Result

This is a paragraph

Links

Syntax Example Result

Jupyter Book

Another page

https://jupyterbook.org

Jupyter Book

Lists

Ordered list

--- 

This is the end of 
some text. 

 
--- 
 

## New Header 

% text 
a line 

% a comment 
another line 

+++ 
This is an example of 
+++ {"meta": "data"} 

a block break 

<tagName> text </tagName> 
<p> This is a 
paragraph </p> 

[text](target) 
[Jupyter Book]

(https://jupyterbook.org) 

[text](relative_path) 
[Another page]

(../style/index) 

<target> <https://jupyterbook.org> 

[text][key] 

[Jupyter Book][intro_page] 
 

[intro_page]: 
https://jupyterbook.org 

https://myst-parser.readthedocs.io/en/latest/using/syntax.html#syntax-comments
https://jupyterbook.org/
https://jupyterbook.org/
https://jupyterbook.org/


Example Result

1. First item

2. Second item

1. First sub-item

1. First item

2. Second item

First subitem

Unordered list

Example Result

First item

Second item

First subitem

First item

1. First subitem

2. Second subitem

Tables

Syntax Example Result

Training Validation

0 5

13720 2744

Table 1 This table title

Training Validation

0 5

13720 2744

Referencing tables

In order to reference a table, you must add a label to it. To add a label to your table simply

include a :name: parameter followed by the label of your table. In order to add a numbered
reference, you must also include a table title. See example above.

1. First item 
2. Second item 

    1. First sub-item 

1. First item 
2. Second item 

    * First sub-item 

* First item 
* Second item 

  * First subitem 

* First item 
  1. First subitem 
  2. Second subitem 

| a    | b    | 
| :--- | ---: | 
| c    | d    | 

|    Training   |   
Validation   | 

| :------------ | ------
-------: | 

|        0      |        
5       | 

|     13720     |      
2744      | 

```{list-table} Table 
title 

:header-rows: 1 
:name: label-to-

reference 
 

* - Col1 
  - Col2 

* - Row1 under Col1 
  - Row1 under Col2 
* - Row2 under Col1 
  - Row2 under Col2 

``` 

```{list-table} This 
table title 

:header-rows: 1 
:name: example-table 

 
* - Training 

  - Validation 
* - 0 
  - 5 

* - 13720 
  - 2744 

``` 

Note



Syntax Example Result

Table 1 is an example.

This is an unnumbered ref: table.

Tabs

Tabs can be used in several ways:

1. At the page level to enclose instruction versions related to different releases (for example, to

separate the DB19 and DB21 assembly instructions).

2. Within pages to divide duplicate content with tab based.

3. Nested within other components such as a list.

Related content that does not include some duplication should be shown in a table rather

than a tab to prevent hidden text.

Example Result

Admonitions

{numref}`label` 
{numref}`example-table` is an 

example. 

[text](label) 
This is an unnumbered ref: 

[table](example-table). 

Note

````{tab-set} 
 

```{tab-item} DB19 
This is example content for the DB19 

``` 
 

```{tab-item} DB21 
This is example content for the DB21 

``` 
```` 

This is example content for the DB19

DB19 DB21



Syntax Result

Use note directives for basic highlighting.

Use warnings for situations that might cause harm, but can be fixed.

A tip is a useful suggestion for the reader.

This directive should be used to highlight particularly tricky steps.

Used for situations that might cause irreparable harm (to people or

robots).

Used for external links (to third-party websites or other documents).

All above specific admonitions are specific pre-made directives. You could make an admonition with

custom title and class with the example below.

```{note} 
Use note 

directives for 
basic 

highlighting. 
``` 

Note

```{warning} 
Use warnings 
for situations 
that might  
cause harm, 
but can be 

fixed. 
``` 

Warning

```{tip} 
A tip is a 
useful 

suggestion for 
the reader. 

``` 

Tip

```{attention} 
This directive 
should be used 

to 
highlight 

particularly 
tricky steps. 

``` 

Attention

```{danger} 
Used for 

situations 
that might  

cause 
irreparable 
harm (to 
people or 
robots). 

``` 

Danger

```{seealso} 
Used for 

external links 
(to 

third-party 
websites or 

other 
documents). 

``` 

See also



content

A custom admonition

Icons

Icons are provided by the font-awesome project. The complete list of icons available can be found

here.

Syntax Example Result



Figures

Syntax Example Result

Fig. 6 Here is my figure

caption!

Framed figures

Use the :class: framed parameter to add a border around the image.

Syntax Example Result

```{admonition} 
Title 
text 
``` 

```{admonition} General 
admonition 
content 
``` 

General admonition

```{admonition} 
Title 

:class: warning 
text 
``` 

```{admonition} This is a 
title 

:class: warning 
A custom admonition 

``` 

This is a title

```{icon} 
<icon-id> 

``` 

```{icon} ice-cream 
``` 

```{figure} 
./path/to/figure.jpg 

:name: label 
 

caption 
``` 

```{figure} 
../../_images/duckietown.jpeg 

:width: 50px 
:name: figure-example-2 

 
Here is my figure caption! 

``` 

```{image} 
./path/to/figure.jpg 

:name: label 
``` 

```{image} 
../../_images/duckietown.jpeg 

:scale: 20% 
:align: center 

:name: image-example 
``` 

![alt-text]
(path/to/image) 

![]
(https://tinyurl.com/39ewhkab) 

```{figure} 
./path/to/figure.jpg 

:class: framed 
``` 

```{figure} 
../../_images/duckietown.jpeg 

:width: 50px 
:class: framed 

``` 

https://fontawesome.com/
https://fontawesome.com/v5/search?o=r&m=free
file:///tmp/jb/_build/html/_images/duckietown.jpeg
file:///tmp/jb/_build/html/_images/duckietown.jpeg
file:///tmp/jb/_build/html/_images/duckietown.jpeg


Content/caption is not permitted for images, but only available for figures.

Settings are not available with ![alt-text](path/to/image) format

Referencing figures

Syntax Example Result

Fig. 6 is a figure example.

Figure 6 is an example.

This figure is an example.

Referencing images

Syntax Example Result

This image is an

example.

Videos

Videos can be referenced using the following methods:

1. vimeo - When possible, video content should be added to the Vimeo account and formatted with

the custom Duckietown vimeo directive.

2. videoembed - For other video content accessible via a web link, use the videoembed directive. All

iframe attributes are available mimicking the :alt: parameter syntax below.

3. video - For videos stored locally to the book project (this is not recommended), use the video

directive. All iframe attributes are available mimicking the :alt: parameter syntax below.

Referencing Vimeo videos

Syntax Example Result

Referencing web videos

Syntax Example Result

Referencing local videos

Note

{numref}`label` 
{numref}`figure-example-2`is 

a 
figure example. 

{numref}`text 
%s <label>` 

{numref}`Figure %s <figure-
example-2>` 

is an example. 

[text]<label> 
This [figure](figure-example-

2) 
is an example. 

[text](label) 
This [image](image-example) 

is an example. 

```{vimeo} video-id 
:alt: alt text 

``` 

```{vimeo} 527022343 
:alt: alt text 

``` 

```{video} 
embed_link 

:alt: alt text 
``` 

```{video} 
https://www.youtube.com/embed/mXH1u885bn8 

:alt: alt text 
``` 

https://www.w3schools.com/tags/tag_iframe.ASP
https://www.w3schools.com/tags/tag_video.asp
https://vimeo.com/527022343


This is not recommended - please host your video content on Vimeo or another online service rather

than in the book project. If absolutely necessary, you can include local videos with custom formatting

using the video directive.

Supported file types: .mp4, .ogm, .ogv, .ogg, .webm.

Syntax Example Result

Math

Syntax Example Result

Inline
This is an example of an inline

equation .

Math blocks

This is an example of a math block

Math blocks with

labels

This is an example of a math block

with a label

Referencing math directives

Syntax Example Result

Check out equation (1).

Code

In-line code

Example:

Result:

Wrap in-line code blocks in backticks: boolean example = true;.

Code and syntax highlighting

Example:

```{video} file_path  
:alt: alt 

``` 

```{video} 
../assets/videos/my_video.mp4 

:alt: alt text 
``` 

This is an example of an 
inline equation 

$z=\sqrt{x^2+y^2}$. z =√x2+ y2

This is an example of a 
math block 

 
$$ 

z=\sqrt{x^2+y^2} 
$$ 

z =√x2+ y2

This is an example of a 
math block with a label 

 
$$ 

z=\sqrt{x^2+y^2} 
$$ (eq-label) 

(1)z =√x2+ y2

[](label) 
Check out equation [](eq-

label). 

Wrap in-line code blocks in backticks: `boolean example = true;`. 

```python 
note = "Python syntax highlighting" 
print(node) 
``` 



or

Result:

or

Executable code

Make sure to include this front-matter YAML block at the beginning of your .ipynb or .md

files.

Example:

Result:

Tags

See the tags section on Jupyter Books documentation. For formatting the code cells.

Gluing variables

Example:

Result:

```none 
No syntax highlighting. 
``` 

note = "Python syntax highlighting" 
print(node) 

No syntax highlighting. 

Warning

--- 
jupytext: 
  formats: md:myst 
  text_representation: 
    extension: .md 
    format_name: myst 
kernelspec: 
  display_name: Python 3 
  language: python 
  name: python3 
--- 

```{code-cell} ipython3 
note = "Python syntax highlighting" 
print(note) 
``` 

note = "Python syntax highlighting" 
print(note) 

Python syntax highlighting 

```{code-cell} ipython3 
from myst_nb import glue 
my_variable = "here is some text!" 
glue("glued_text", my_variable) 
``` 
 
Here is an example of how to glue text: {glue:}`glued_text` 

https://jupyterbook.org/en/stable/reference/cheatsheet.html#tags


Here is an example of how to glue text: 'here is some text!'

Gluing numbers

Example:

Result:

Here is an example of how to glue numbers: 0.540809882310568 and 0.10989813221697081.

Gluing visualizations

Example:

Result:

from myst_nb import glue 
my_variable = "here is some text!" 
glue("glued_text", my_variable) 

'here is some text!' 

```{code-cell} ipython3 
from myst_nb import glue 
import numpy as np 
import pandas as pd 
 
ss = pd.Series(np.random.randn(4)) 
ns = pd.Series(np.random.randn(100)) 
 
glue("ss_mean", ss.mean()) 
glue("ns_mean", ns.mean(), display=False) 
``` 
 
Here is an example of how to glue numbers: {glue:}`ss_mean` and {glue:}`ns_mean`. 

from myst_nb import glue 
import numpy as np 
import pandas as pd 
 
ss = pd.Series(np.random.randn(4)) 
ns = pd.Series(np.random.randn(100)) 
 
glue("ss_mean", ss.mean()) 
glue("ns_mean", ns.mean(), display=False) 

/usr/local/lib/python3.8/dist-packages/pandas/core/computation/expressions.py:20: 
UserWarning: Pandas requires version '2.7.3' or newer of 'numexpr' (version 
'2.7.1' currently installed). 
  from pandas.core.computation.check import NUMEXPR_INSTALLED 

0.540809882310568 

```{code-cell} ipython3 
from myst_nb import glue 
import matplotlib.pyplot as plt 
import numpy as np 
 
x = np.linspace(0, 10, 200) 
y = np.sin(x) 
fig, ax = plt.subplots() 
ax.plot(x, y, 'b-', linewidth=2) 
 
glue("glued_fig", fig, display=False) 
``` 
 
This is an inline glue example of a figure: {glue:}`glued_fig`. 
This is an example of pasting a glued output as a block: 
```{glue:} glued_fig 
``` 



This is an inline glue example of a figure: . This is an example of pasting a glued output as a

block:

Gluing math

Example:

from myst_nb import glue 
import matplotlib.pyplot as plt 
import numpy as np 
 
x = np.linspace(0, 10, 200) 
y = np.sin(x) 
fig, ax = plt.subplots() 
ax.plot(x, y, 'b-', linewidth=2) 
 
glue("glued_fig", fig, display=False) 

```{code-cell} ipython3 
import sympy as sym 
x, y = sym.symbols('x y') 
z = sym.Function('z') 
z = sym.sqrt(x**2+y**2) 
glue("example_eq", z, display=False) 
``` 
 
To glue a math equation try 
```{glue:math} example_eq 
:label: glue-eq-example 
``` 



Result:

To glue a math equation try:

Reference documents

Syntax Example Result

Ref to Style guide

See here for more information.

Cross-book references

The cross-book referencing is achieved using the intersphinx plugin for sphinx. For a cross-book

reference, you need to know the book name and the label defined within that book.

All books hosted on docs.duckietown.com are automatically made available to be linked

from any other Duckietown book. The book name is the repository name.

Example

Link to a page on another book.

How to configure

The mapping between book names and their remote location is defined in the _config.yml file. For

example, we can add a link to the book jupyter-book-docs as follows,

import sympy as sym 
x, y = sym.symbols('x y') 
z = sym.Function('z') 
z = sym.sqrt(x**2+y**2) 
glue("example_eq", z, display=False) 

()√x2+ y2

[]
(path/to/document) 

Ref to [](../style/index) 

[text]
(path/to/document) 

See [here](../style/index) 
for more information. 

Note

Link to a [page on another book](book-opmanual-duckiebot:duckiebot-boot). 

sphinx: 
  ... 
  config: 
    intersphinx_mapping: 
      jupyter-book-docs: 
        - "https://jupyterbook.org/en/stable" 
        - null 

https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html
https://staging-docs.duckietown.com/daffy/opmanual-duckiebot/setup/setup_boot/index.html#duckiebot-boot


Footnotes are displayed at the

very bottom of the page.

Footnotes

Syntax Example Result

This is a footnote

reference.[1]

Troubleshooting

Troubleshooting cards can be created using the {trouble} directive.

Syntax Example

Requirements

Requirements/outputs cards can be created using the {needget} directive.

Syntax Example

Tests

You can use the Test / What to Expect card (testexpect) to define checkpoints after book instructions.

Syntax Result

To conveniently find the available labels in other books, a utility comes with jupyter-book

installation. Take the above linked book for example:

Or, use it in a script (example outcomes provided below)

Advanced: list all labels for a given book

python -m sphinx.ext.intersphinx 
https://jupyterbook.org/en/stable/objects.inv 

from sphinx.ext.intersphinx import inspect_main 
inspect_main(["https://jupyterbook.org/en/stable/objects.inv"]) 

Note

[^ref] 
 

[^ref]: Footnote text 

This is a footnote reference.
[^myref] 

 
[^myref]: This **is** the 

footnote definition. 

```{trouble} 
symptom here 

--- 
resolution here 

``` 

Troubleshooting

SYMPTOM I do not see a camera image.

RESOLUTION Make sure the camera cable is plugged in.

```{needget} 
* Requirement 1 
* Requirement 2 

--- 
* Output 1 

``` 

What you will need Duckie

Robot

What you will get Duckiebot

```{testexpect} 
Test 
--- 

Expect 
``` 

Test

Expected Result This command should output a version

number for the pip3 package.

pip3 --version 



[TPZ+17]

[1]

ToDos

You can drop ToDos throughout the documentation using the {todo} directive. ToDos are rendered

only on the staging documentation, they are hidden in production.

Syntax Example

Citations

Make sure you have a reference bibtex file. And it is included in the _config.yml, under

bibtex_bibfiles section.

Syntax Example Result

An example citation [TPZ+17].

And, at the bottom of the page, include the list of references:

Jacopo Tani, Liam Paull, Maria T. Zuber, Daniela Rus, Jonathan How, John Leonard, and

Andrea Censi. Duckietown: an innovative way to teach autonomy. In Dimitris Alimisis, Michele

Moro, and Emanuele Menegatti, editors, Educational Robotics in the Makers Era, 104–121.

Cham, 2017. Springer International Publishing.

This is the footnote definition.

Style guide

This chapter describes the style guide for our documentation. We will cover the conventions for writing

the technical documentation.

Organization

The documentation is divided into books, parts (labeled part:), chapters (labeled chapter:), and

sections (labeled sec:).

The structure of each book is stored inside the src/_toc.yml file.

General guidelines for technical writing

The following holds for all technical writing.

The documentation is written in correct English.

The words “should” and “must” are not interchangeable, they have precise meanings;[1]

“Please” is unnecessary in technical documentation;

```{todo} 
todo message 

here 
``` 

TODO todo message here

Note

{cite}`mybibtexcitation` 
An example citation 
{cite}`tani2016`. 

```{bibliography} 
:filter: docname in docnames 
``` 



“Please remove the SD card.”

“Remove the SD card.”

Do not use colloquialisms or abbreviations;

“The pwd is ubuntu.”

“The password is ubuntu.”

Python is capitalized when used as a name;

“If you are using python…”

“If you are using Python…”

Do not use contracted forms;

it’s

it is

Do not use emojis;

Do not use ALL CAPS;

Make infrequent use of bold statements;

Do not use exclamation points;

Style guide for the Duckietown documentation

The English version of the documentation is written in American English;

behaviour

behavior

All the filenames and commands must be enclosed in code blocks using Markdown backticks;

Wrong

Better

Wrong

Better

Wrong

Better

Wrong

Better

Incorrect

Correct



“Edit the ~/.ssh/config file using nano.”

“Edit the ~/.ssh/config file using nano.”

Ctrl - C , ssh, etc. are not verbs;

“ Ctrl - C  from the command line.”

“Use Ctrl - C  from the command line.”

Subtle humor and puns about duckies are encouraged.

Do make use of the necessary complexity to convey your message, but do not hide behind overly

complex language to disguise flaws. Remember Einstein’s quote:

You don’t really understand something unless you can explain it to your grandmother.

provide → give

query → question

in order to → to

utilize → use

Frequently misspelled words

“Duckiebot” is always capitalized.

Use “Raspberry Pi”, not “PI”, “raspi”, etc.

These are other words frequently misspelled:

5 GHz WiFi

Other conventions

When the user must edit a file, just say: “edit /this/file”.

Writing down the command line for editing, like the following:

is too much detail. Only specify the editor to use if the task at hand requires functionalities that are only

available on a specific editor.

Troubleshooting sections

Write the documentation as if every step succeeds.

Then, at the end, make a “Troubleshooting” section.

Incorrect

Correct

Incorrect

Correct

Examples

vi /this/file 



[1]

Organize the troubleshooting section as a list of symptom/resolution.

The following is an example of a troubleshooting section.

Troubleshooting

Use the {trouble} directive to declare troubleshooting steps. For example,

These meanings are explained in this document.

Troubleshooting

SYMPTOM This strange thing happens.

RESOLUTION Maybe the camera is not inserted correctly. Remove and reconnect.

By Duckietown, Inc. 

© Copyright 2022. 

https://www.ietf.org/rfc/rfc2119.txt

